
Ontology-mediatedQueries over Probabilistic Data via
Probabilistic Logic Programming

Timothy van Bremen

timothy.vanbremen@cs.kuleuven.be

KU Leuven, Belgium

Anton Dries

anton.dries@cs.kuleuven.be

KU Leuven, Belgium

Jean Christoph Jung

jeanjung@uni-bremen.de

Universität Bremen, Germany

ABSTRACT
We study ontology-mediated querying over probabilistic data for

the case when the ontology is formulated in ELHdr
, an expressive

member of the EL family of description logics. We leverage tech-

niques that have been developed (i) for classical ontology-mediated

querying and (ii) for probabilistic logic programming and provide an

implementation based on our findings. We include both theoretical

considerations and an experimental evaluation of our approach.

ACM Reference Format:
Timothy van Bremen, AntonDries, and Jean Christoph Jung. 2019. Ontology-

mediated Queries over Probabilistic Data via Probabilistic Logic Program-

ming. In The 28th ACM International Conference on Information and Knowl-
edge Management (CIKM’19), November 3–7, 2019, Beijing, China. ACM, New

York, NY, USA, 4 pages. https://doi.org/10.1145/3357384.3358168

1 INTRODUCTION
In many domains, data is inherently probabilistic due to uncertainty

in the measurement or extraction process: for example, temperature

readings from an unreliable sensor, or information extracted from

the Internet using an imperfect NLP system. We nevertheless may

be in possession of some deterministic domain knowledge which

can be used to enrich the data. For instance, we may know that

it cannot be snowing if we record the weather as being hot, or

that every person extracted with the NLP system must have a

date of birth. This idea of accessing uncertain data enriched with

deterministic knowledge (an ontology) has led to the framework of

ontology-mediated querying over probabilistic data (OMQPD) [12].
The main reasoning task in this setting is to evaluate a query over a

probabilistic dataset, modelled as a tuple-independent probabilistic

database, in the presence of an ontology.

Existing work on OMQPD has focused mainly on lightweight on-

tology languages from the DL-Lite family [4]. One observation [16]

of particular interest was that the well-known technique of comput-

ing first-order rewritings [4] serves as a useful tool for implementing

OMQPD systems. Intuitively, instead of evaluating a query in the

presence of an ontology, the ontology is compiled into the query;

the result is then evaluated (without ontology) over the data.

In this paper we focus on the ontology language ELHdr
, an

expressivemember of the EL family of description logics [5], which

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00

https://doi.org/10.1145/3357384.3358168

forms the basis of the OWL 2 EL profile [1]. In contrast to DL-
Lite, first-order rewritings are not a complete method for ontology-

mediated queryingwith ontologies formulated in EL (or extensions

thereof). That is, there exist query/ontology pairs for which no

equivalent first-order rewriting exists [7].

In order to have a complete tool, we show how the combined ap-
proach to ontology-mediated querying over deterministic data [13]

can be lifted to the probabilistic case. This results in a rewriting

of the query, ontology, and probabilistic data into a probabilistic
logic program (PLP), which is a logic program augmented with

uncertainty; see [9] for a recent survey. Often based on the distri-

bution semantics, PLPs feature a combination of uncertainty and

deterministic rules similar to the OMQPD setting. From a practical

perspective, our rewriting technique allows us to take advantage of

the extensive research conducted in the probabilistic logic program-

ming community, which has resulted in several powerful inference

systems, e.g., PRISM [15], cplint [2] and ProbLog [14]. As a proof-

of-concept, we implemented the rewriting approach using ProbLog

as an inference system and evaluated it on a probabilistic variant

of the Lehigh University Benchmark [11]. From a theoretical per-

spective our approach also yields a polynomial time reduction from

OMQPD to weighted model counting over propositional formulas, a

popular approach for probabilistic inference [8].

2 BACKGROUND
We briefly review the description logic ELHdr

. Fix disjoint count-

ably infinite sets of concept and role namesNC andNR , respectively.

Then EL-concepts are formed according to the syntax rule

C ::= ⊤ | A | C ⊓C | ∃r .C
where A ∈ NC and r ∈ NR . An ELH

dr -ontology (hereafter on-

tology) is a set of concept inclusions C ⊑ D, role inclusions r ⊑ s ,
domain restrictions dom(r) ⊑ C , and range restrictions ran(r) ⊑ C ,
where C and D are EL-concepts and r , s ∈ NR . An ABox is a fi-

nite set of concept assertions A(a) and role assertions r (a,b) where
A ∈ NC , r ∈ NR , and a,b range over a countably infinite set of

individual names NI . We denote with Ind(A) the set of all individ-
ual names that occur in A. The semantics of ELHdr

is defined

as usual in terms of interpretations I = (∆I , ·I); we elide a full
description here and instead refer the reader to Baader et al. [6]

for details. Following [5, 13], we assume without loss of generality

that (i) for every role name r , there is exactly one range restriction

ran(r) ⊑ A in T , and we denote the concept name A with Ran(r),
(ii) if T |= r ⊑ s , then T |= Ran(r) ⊑ Ran(s), (iii) there are no r , s
with T |= s ⊑ r and T |= r ⊑ s , (iv) for every domain restriction

dom(r) ⊑ C , we have C ∈ NC , and (v) every C ⊑ D in T takes one

of the following forms, for concept names A,A′,B:

A ⊓A′ ⊑ B, ∃r .A ⊑ B, A ⊑ ∃r .B.

https://doi.org/10.1145/3357384.3358168
https://doi.org/10.1145/3357384.3358168

Ontology-mediated Querying over Probabilistic Data. Let NV de-

note a countably infinite set of variables disjoint from NI . Then

NT = NV ∪NI forms a set of terms. A conjunctive query (CQ) φ is a

first-order formula of the formφ(x) = ∃y.ψ (x, y), where x and y are
tuples of variables in NV , and ϕ(x, y) is a conjunction of atoms over

signature NC ∪NR using terms from NT . We drop the free variables

x of φ(x) whenever no confusion can arise. An ontology-mediated
query (OMQ) is a pair (T ,φ) of ontology T and CQ φ. Given an

ABox A, and an OMQ (T ,φ), we say that a tuple a of individuals
from A is a certain answer for (T ,φ) over A if (T ,A) |= φ(a), that
is, every model I of T and A satisfies I |= φ(a). The set of all
certain answers to (T ,φ) is denoted by certA (T ,φ).

Following [12], we use assertion-independent probabilistic ABoxes
(ipABoxes) to model uncertain data. An ipABox is a pair (A,p)
whereA is a classical ABox andp : A → [0, 1] assigns a probability

to every assertion in A. An ipABox (A,p) induces a distribution
p(·) over possible ABoxes A ′ ⊆ A, which is defined by taking

p(A ′) = Πα ∈A′p(α) · Πα ∈A\A′(1 − p(α)), (1)

for everyA ′ ⊆ A. The probability of an answer a to an OMQ (T ,φ)
over an ipABox (A,p) is then defined as:

PrA,p (T ,φ, a) =
∑

A′⊆A,a∈certA′ (T,φ)

p(A ′).

The prime inference task here is to compute answer probabilities,
that is, given an ipABox (A,p) and an OMQ (T ,φ) with answer

candidate a, compute PrA,p (T ,φ, a).

Probabilistic Logic Programs. We introduce a variant of proba-

bilistic logic programs that is sufficient for our purposes, though

some systems support more features. A probabilistic logic program
(PLP) is a triple (F ,p,Π) where F is a set of facts, p : F → [0, 1]

assigns a probability to every fact, and Π is a stratified logic program
consisting of rules of the form:

H ← B1, . . . ,Bm ,¬Bm+1, . . . ,¬Bn

whereH and allBi are relational atoms over variables and individual

names. The semantics of PLPs (F ,p,Π) is defined as follows. The

pair (F ,p) induces a probability distribution p(·) over subsets F ′ ⊆
F just as in Equation (1). Moreover, given a set of facts F and a set

of rules Π, we denote with Π(F) the minimal supported model of
F ∪Π, obtained via the iterated fixed point construction of [3]. The

prime inference task for PLPs ismarginal inference, that is, compute

the probability of a ground fact G under the PLP (F ,p,Π), which is:

PrF,p,Π(G) =
∑

F′⊆F,G ∈Π(F′)

p(F ′).

3 COMBINED APPROACH OVER IPABOXES
Let us briefly review the combined approach to OMQs over non-

probabilistic ABoxes [13]. For simplicity, we use a slightly different

presentation than in the original paper, but they are easily seen to

be equivalent. In a nutshell, given (T ,φ) and A, one computes in

polynomial time an ABox AT ⊇ A and a set of rules ΠT,φ such

that, for some distinguished relation name Goal, we have

certA (T ,φ) = {a | Goal(a) ∈ ΠT,φ (AT)}.

Thus, the computation of certain answers is reduced to computing

AT and the minimal model ΠT,φ (AT). We will give more details

on how AT and ΠT,φ are constructed when they are needed to

prove correctness of our adaptation. Note that the combined ap-

proach is not directly applicable to answering an OMQ (T ,φ) over
an ipABox (A,p) since for every A ′ ⊆ A, the ABox A ′

T
might be

different. We solve this by providing a set of rules ΠT such that:

for every A ′ ⊆ A, we have ΠT,φ (ΠT (A
′)) = ΠT,φ (A

′
T
). (∗)

Given (∗), it is not hard to verify that we can use ΠT,φ ∪ ΠT to lift

the combined approach to answering OMQs over ipABoxes. More

precisely, the following Lemma is an immediate consequence of

the definition of marginal probabilities and (∗):

Lemma 1. For every OMQ (T ,φ), ipABox (A,p), and answer can-
didate a, we have: PrA,p (T ,φ, a) = PrA,p,ΠT,φ∪ΠT (Goal(a)).

In the construction of ΠT , we use fresh individuals aA,B , where
A,B are concept names that occur in T , and a fresh concept name

Aux to mark these individuals as auxiliary. Then, ΠT is the collec-

tion of the following rules (which do not use negation):

• A(aA,B), B(aA,B), and Aux(aA,B), for every fresh aA,B ;
• B(x) ← A(x), A′(x), for every A ⊓A′ ⊑ B ∈ T ;
• B(x) ← A(y), r (x ,y), for every ∃r .A ⊑ B ∈ T ;
• r (x ,aB,Ran(r)) ← A(x), for every A ⊑ ∃r .B ∈ T ;
• s(x ,y) ← r (x ,y), for every r ⊑ s ∈ T ;
• A(x) ← r (y,x), for every ran(r) ⊑ A ∈ T ;
• A(x) ← r (x ,y), for every dom(r) ⊑ A ∈ T .

In order to prove (∗), we recall the construction ofAT and the rele-

vant properties of the PLP ΠT,φ as used in the combined approach.

The extension AT of A contains the following assertions:

• Aux(aA,B), for every fresh aA,B ;
• B(a), for all a ∈ Ind(A) and B such that T ∪ A |= B(a);
• A′(aA,B), for all aA,B such that T |= A ⊓ B ⊑ A′;
• r (a,b) for all a,b ∈ Ind(A) with s(a,b) ∈ A and T |= s ⊑ r ;
• r (a,aA,B) for all a ∈ Ind(A) such that T ∪ A |= ∃s .A(a),
B = Ran(s), and T |= s ⊑ r ;
• r (aA,B ,aA′,B′) for all A,B,A

′,B′ such that T |= A ⊓ B ⊑
∃s .A′, B′ = Ran(s), and T |= s ⊑ r .

It is routine to verify that ΠT (A
′) = A ′

T
, for everyA ′ ⊆ A. Thus,

in order to prove Property (∗) it suffices to note that the rules in

ΠT,φ constructed in the classical combined approach do not use

symbols from T , A, φ in the head.

Lemma 1 has two important consequences. First, we can use

any probabilistic logic programming system to compute answer

probabilities for ELHdr
OMQs over ipABoxes. Second, it provides

a polynomial time reduction toweighted model counting over propo-
sitional formulas [8], which is interesting from both a theoretical

and practical perspective. Our proof is similar to what has been

done in [10]. We use standard notation for propositional formulas.

A weight functionW for a propositional formula χ over variables

x1, . . . ,xn , assigns a valueW (ℓ) to every literal ℓ over x1, . . . ,xn .
The weight of a variable assignment π , denotedW (π), is defined as

Πn
i=1W (ℓi) where ℓi = xi if π (xi) = 1 and ℓi = ¬xi , otherwise. The

weight of a formula, denotedW (χ) is then the sum of the weights

of all satisfying assignments for χ .

Lemma 2. For every ELHdr OMQ (T ,φ), ipABox (A,p), and pos-
sible answer a, one can compute in polynomial time a propositional for-
mula χ and a weight functionW such thatW (χ) = PrA,p (T ,φ, a).

Combined

rewriting

Probabilistic

logic program

ipABox (A,p)

ProbLog

Answer

probabilities

Query φ

Ontology T

Figure 1: The architecture of our approach.

Proof. Let Π be the PLP ΠT,φ ∪ ΠT from Lemma 1; its size is

polynomial in the size of T and independent from A. Let further

Π1, . . . ,Πk denote the strata of Π. We first construct the groundings
G1, . . . ,Gk of Π1, . . . ,Πk . Introduce a propositional variable xf for

every ground fact f that can be obtained by instantiating an atom

in Π with individuals from Ind(A). Then, Gi is the set of clauses

xд(H) ← xд(B1) ∧ . . . ∧ xд(Bm) ∧ ¬xд(Bm+1) ∧ . . . ∧ ¬xд(Bn)

for all H ← B1, . . . ,Bm ,¬Bm+1, . . . ,¬Bn in Πi with free variables

x, and all mappings д : x→ Ind(A). By construction, G :=
⋃
i Gi

is a stratified propositional Horn formula with strata G1, . . . ,Gk ,

which satisfies that, for every A ′ ⊆ A, Π(A ′) corresponds pre-
cisely to the minimal supported model π of G ∪ {xf | f ∈ A

′}.

To arrive at χ , we “simulate” the computation of the minimal

supported model of G. For every j ∈ {1, . . . ,k}, let Hj be the set

of variables that occur as head in G j , and create copies x i , i ∈
{1, . . . , |Hj |}, for every x ∈ Hj . Then, χ = χ0 ∧ χ1 ∧ χ2 where

χ0 = xNGoal(a) with N := |Hk |, and χ1, χ2 are defined as follows.

Formula χ1 uses additional variables yf , for every f ∈ A, and

is defined as χ1 =
∧
f ∈A (x

1

f ↔ yf). Formula χ2 has a conjunct

χf for every variable xf ∈ Hj for some j ∈ {1, . . . ,k}. To define

χf , let r1, . . . , rk be the bodies of all rules in G j with head xf . For

some rule body r ∈ {r1, . . . , rk }, we denote with r i−1 the variant
of r where every variable x with x ∈ Hj is replaced with x i−1, and

every variable x with x ∈ Hj′ , j
′ < j is replaced with xN where

N = |Hj′−1 |. Now, χf is defined as:

χf =
N∧
i=2

(
x if ↔

(
x i−1f ∨

k∨
j=1

r i−1j
))

Intuitively, x if with xf ∈ Hj is forced to be true iff it can be derived

using at most i applications of rules fromG j . That is, it is true from

the beginning (via χ1), or it can be derived using some rule that

depends only on variables with lower subscript i − 1 (via χ2). It
remains to define the weight functionW as follows:

• W (yf) = p(f) andW (¬yf) = 1−p(f), for every f ∈ A, and

• W (x) =W (¬x) = 1, for all other variables x used in χ .

It can be verified that χ andW are as required. □

4 IMPLEMENTATION AND EXPERIMENTS
Lemma 1 immediately gives rise to an implementation of OMQPD

with ELHdr
on top of a probabilistic logic programming system

supporting marginal inference. More precisely, on input (T ,φ),
(A,p) and a, we construct the PLP P = (ΠT,φ ∪ ΠT ,A,p), feed
the system with P, and query the marginal probability of Goal(a).

1.5 2 2.5 3 3.5 4 4.5

·104

50

100

150

200

250

ipABox size

R
u
n
t
i
m
e
(
s
)

Query 5

Query 6

Query 8

Figure 2: Total inference time with the combined approach
on various ipABox sizes, using classic inference.

As a probabilistic logic programming system, we use ProbLog [14],

which has a sufficiently expressive language with the required se-

mantics. Moreover, it supports marginal inference via a variety of

different algorithms. The overall architecture of our approach is

depicted in Figure 1. For our experiments, we used two different

inference methods: (i) the “classic” ProbLog inference approach

of cycle-breaking and compilation to sentential decision diagrams

(SDDs) [18], and (ii) TP -compilation to SDDs, which avoids the

cycle-breaking step altogether through forward inference [17]. Re-

gardless of the method used, ProbLog first computes the ground

program relevant to the query.

We conducted our experiments on a probabilistic version of the

Lehigh University Benchmark (LUBM) [11]. LUBM is a benchmark

formeasuring the performance of semantic knowledge base systems

in a consistent manner, comprising an ontology, data generation

tool, and a set of test queries. For the purposes of our experiments,

we dropped transitive and inverse role declarations from the on-

tology in order to obtain a valid ELHdr
-ontology. We set the

parameters of the original data generation tool to generate an ABox

of cardinality 15189. Of this, 12260 statements were role assertions

and the remainder were concept assertions.

We wrote scripts to transform the assertions generated by the

data generation tool to probabilistic facts in ProbLog. As the data

from the tool is deterministic by default, we enriched the output by

associating each ABox statement with an indepedent, uniformly

drawn probability Xi ∼ U(0, 1) to obtain an ipABox. Finally, we

computed the combined rewritings of each of the LUBM queries

with respect to the ontology. As first-order rewritings exist for all of

the queries we considered, we manually computed these rewritings

for comparison purposes. Queries 11, 12, and 13 were deliberately

omitted as they are specifically designed to test reasoning with

inverse and transitive role declarations, which as mentioned earlier

are unsupported in our ontology language. The results of applying

ProbLog to the rewritten LUBM queries can be found in Table 1.

Interestingly, we see that, particularly in the combined approach,

most of the time is spent in the grounding step rather than the

knowledge compilation step for each query. These steps corre-

spond to the (deterministic) query answering phase and probability

computation phase, respectively. This means that a large amount of

Table 1: Grounding and compilation runtime for the Lehigh University Benchmark queries. All times are in seconds.

Combined approach First-order rewriting

Classic inference Classic inference

Query Grounding TP -compilation Cycle-breaking Compilation Grounding TP -compilation Cycle-breaking Compilation

1 0.00 0.00 0.00 0.00 0.04 0.05 0.00 0.00

2 70.14 5.17 0.00 0.00 28.82 0.11 0.00 0.00

3 0.03 0.00 0.00 0.00 0.59 0.67 0.00 0.00

4 25.60 5.73 0.02 0.03 0.88 0.95 0.02 0.03

5 28.24 28.04 1.60 2.53 2.39 5.66 0.40 1.05

6 25.61 71.23 2.92 6.30 4.09 50.12 2.23 5.67

7 78.49 6.26 0.04 0.05 4.53 5.44 0.02 0.05

8 30.24 92.90 3.46 7.47 6.19 71.90 2.54 6.91

9 Timeout – – – Timeout – – –

10 27.28 4.85 0.00 0.00 4.35 4.63 0.01 0.03

14 0.32 0.12 0.01 0.03 0.20 0.13 0.00 0.00

“Timeout” indicates that the procedure took over ten minutes to run.

time is taken in the computation of the relevant ground program,

which is based on SLD-resolution. As SLD-resolution is, theoreti-

cally, not a hard task, we believe this to be the result of inefficiencies

in ProbLog’s implementation of grounding which become apparent

when dealing with large programs like the ones here.

The classic ProbLog inference method of cycle-breaking and

compilation to SDDs consistently outperforms TP -compilation. We

also observe that first-order rewritings seem to have somewhat

better inference times overall, as a trade-off for the incompleteness

of this approach. We conclude that in practice, it may be best to

first test the first-order rewritability of the query before resorting

to the combined approach as a second option.

Finally, to get an indication of how our method scales, we exam-

ined the total inference time on different ipABox sizes for a subset of

the queries in Table 1 for which inference appeared non-trivial. The

total inference time here is the sum of grounding, cycle-breaking,

and SDD compilation time. The results are shown in Figure 2.

5 CONCLUSION AND FUTUREWORK
We established a connection between OMQPD with ontologies for-

mulated in ELHdr
and probabilistic logic programming, inspired

by the combined approach known from classical ontology-mediated

querying. We evaluated our approach with promising first results.

There are a number of possible next steps. The results suggest

that further work on ProbLog’s grounding engine is needed to

scale to real-world database sizes; e.g. one could use the ground-

ing constructed in Lemma 2. One could also investigate whether

our approach extends to different ontology languages. Finally, it is

interesting to see whether other inference capabilities of ProbLog,

such as learning, can be transferred to the OMQPD setting.

ACKNOWLEDGMENTS
This work has received funding from the Research Foundation -

Flanders (grant G042815N), and from the European Research Coun-

cil under the European Union’s Horizon 2020 research and innova-

tion programme (grant 694980).

REFERENCES
[1] 2012. OWL 2 Web Ontology Language Profiles (2 ed.). W3C Recommendation.

W3C. http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[2] Marco Alberti, Elena Bellodi, Giuseppe Cota, Fabrizio Riguzzi, and Riccardo Zese.

2017. cplint on SWISH: Probabilistic Logical Inference with a Web Browser.

Intelligenza Artificiale 11, 1 (2017), 47–64.
[3] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. 1988. Towards a Theory

of Declarative Knowledge. In Foundations of Deductive Databases and Logic
Programming, Jack Minker (Ed.). Morgan Kaufmann, 89–148.

[4] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-

kharyaschev. 2009. The DL-lite Family and Relations. J. Artif. Int. Res. 36, 1
(2009), 1–69.

[5] Franz Baader, Sebastian Brandt, and Carsten Lutz. 2005. Pushing the EL Envelope.

In Proceedings of IJCAI 2005. 364–369.
[6] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. 2017. An Introduction

to Description Logic. Cambridge University Press.

[7] Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. 2016. First

Order-Rewritability and Containment of Conjunctive Queries in Horn Descrip-

tion Logics. In Proceedings of IJCAI 2016. 965–971.
[8] Mark Chavira and Adnan Darwiche. 2008. On probabilistic inference by weighted

model counting. Artif. Intell. 172, 6-7 (2008), 772–799.
[9] Luc De Raedt and Angelika Kimmig. 2015. Probabilistic (logic) programming

concepts. Machine Learning 100, 1 (2015), 5–47.

[10] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd

Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. 2015. Inference and

learning in probabilistic logic programs using weighted Boolean formulas. TPLP
15, 3 (2015), 358–401.

[11] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for

OWL knowledge base systems. J. Web Semant. 3, 2-3 (2005), 158–182.
[12] Jean Christoph Jung and Carsten Lutz. 2012. Ontology-Based Access to Proba-

bilistic Data with OWL QL. In Proceedings of ISWC 2012. Springer, 182–197.
[13] Carsten Lutz, David Toman, and Frank Wolter. 2009. Conjunctive Query An-

swering in the Description Logic EL Using a Relational Database System. In

Proceedings of IJCAI 2009. 2070–2075.
[14] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog: A Proba-

bilistic Prolog and Its Application in Link Discovery. In Proceedings of IJCAI 2007.
2462–2467.

[15] Taisuke Sato and Yoshitaka Kameya. 1997. PRISM: a language for symbolic-

statistical modeling. In Proceedings of IJCAI 1997. 1330–1335.
[16] Joerg Schoenfisch and Heiner Stuckenschmidt. 2015. Towards Large-Scale Prob-

abilistic OBDA. In Proceedings of SUM 2015. Springer, 106–120.
[17] Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and

Luc De Raedt. 2016. T
P
-Compilation for inference in probabilistic logic programs.

Int. J. Approx. Reasoning 78 (2016), 15–32.

[18] Jonas Vlasselaer, Joris Renkens, Guy Van den Broeck, and Luc De Raedt. 2014.

Compiling probabilistic logic programs into sentential decision diagrams. In

Workshop on Probabilistic Logic Programming (PLP), Vienna.

	Abstract
	1 Introduction
	2 Background
	3 Combined Approach over ipABoxes
	4 Implementation and Experiments
	5 Conclusion and Future Work
	Acknowledgments
	References

