

FastNFA: A High-Performance FPRAS Implementation for the #NFA Problem

Alberto Heissl^{1*} (R) Vinh-Hien D. Huynh^{1*} (R) Juan Guevara^{1*},
Kuldeep S. Meel², and Timothy van Bremen¹

¹ Nanyang Technological University, Singapore
alberto.heissl@studenti.unipd.it, hien@u.nus.edu,
juan.guevara@mbzuai.ac.ae, timothy.vanbremen@ntu.edu.sg
² Georgia Institute of Technology, USA
meel@gatech.edu

Abstract. The #NFA problem asks for the number of words of a fixed length n accepted by a non-deterministic finite automaton. We present FastNFA, a practical tool for solving the #NFA problem at scale in practice. FastNFA computes randomized approximations for the #NFA problem, and comes with rigorous (ϵ, δ) -guarantees on the accuracy of the estimates produced. Our experimental results show that FastNFA scales well beyond naïve implementations of existing theoretical algorithms, solving a full order of magnitude more benchmarks within a fixed timeout.

Keywords: non-deterministic finite automata · constrained counting · randomized algorithms

1 Introduction

In this paper, we introduce FastNFA, a novel tool for solving the following problem in practice:

#NFA: given a non-deterministic finite automaton (NFA) $\mathcal{A} = (\mathcal{Q}, q_I, q_F, \mathcal{T})$ with m states, and a number $n \in \mathbb{Z}$, determine $|\mathcal{L}_n(\mathcal{A})|$, that is, the number of words of length n in the language accepted by \mathcal{A} .

The #NFA problem is a fundamental problem in computer science, since an NFA is arguably *the* canonical succinct representation of a regular language. From a theoretical perspective, the #NFA problem is known to be #P-complete; more specifically, it lies in the SpanL-complete complexity class [2]. In particular, this implies that many other natural problems can be reduced to #NFA, for example, counting satisfying assignments of a Boolean formula in disjunctive normal form (DNF), counting answers to regular path queries (RPQs) on graph databases,

* Alberto Heissl, Vinh-Hien D. Huynh, and Juan Guevara contributed equally to this research. The symbol (R) denotes random author order. The publicly verifiable record of the randomization is available at <https://www.aeaweb.org/journals/random-author-order>

evaluating RPQs on probabilistic graphs [3], and counting satisfying assignments of non-deterministic ordered binary decision diagrams (nOBDDs) [4], among others.

Recent years have seen significant progress on randomized approximation algorithms for the $\#\text{NFA}$ problem. In a breakthrough result, Arenas et al. [4] showed the existence of a *fully polynomial-time randomized approximation scheme* (FPRAS) for the $\#\text{NFA}$ problem; i.e., a polynomial-time randomized approximation algorithm returning the true count within a $(1 \pm \varepsilon)$ -multiplicative threshold with high probability. However, the time complexity of their original algorithm ($\mathcal{O}(m^{17}n^{17}\varepsilon^{-14})$, up to poly-logarithmic factors), is untenably high for practical implementation. A growing line of work has focused on bringing down this complexity to the current best bound of $\mathcal{O}(m^3n^2\log(mn)\varepsilon^{-2})$ [7, 8]; but until now no algorithm has been amenable to implementation in code due to impractically large constants.

In this paper, we describe the design and implementation³ of **FastNFA**, the first algorithm capable of solving $\#\text{NFA}$ (and more generally, any problem in **SpanL**) at a large scale in practice. We do this by observing and addressing several shortfalls in the current best-known theoretical FPRAS for the $\#\text{NFA}$ problem, known as **countNFA** [8]. First, we observe that the internal parameters used in **countNFA** can be tightened for improved performance while retaining theoretical guarantees (Section 4.1). Secondly, we identify and exploit a *parallelism-performance tradeoff* (Section 4.2), where the expected runtime of individual runs of a key subroutine of the algorithm can be reduced at the price of requiring more (parallel) runs, and vice versa. Lastly, motivated by the observation that many NFAs contain only limited nondeterminism in practice, we introduce an optimization (Section 4.3) that avoids unnecessary computation for states that occur only as part of “deterministic lines”, i.e., runs of the NFA without nondeterminism.

The effectiveness of the above improvements incorporated into **FastNFA** is supported by comprehensive experimental results presented in Section 5. In particular, we run an ablation study that sheds light on the impact of each individual optimization. Our results confirm a significant impact; in particular, **FastNFA** solves over $10\times$ as many benchmarks within a 300 second timeout as a naïve implementation of the original **countNFA** algorithm (Figure 2).

2 Notation and Preliminaries

We write $[n]$ to denote the set $\{1, 2, \dots, n\}$. For a, b and ε three non-negative real numbers, we use $a \in (1 \pm \varepsilon)b$ to denote $(1 - \varepsilon)b \leq a \leq (1 + \varepsilon)b$; similarly, $a \in b(1 \pm \varepsilon)^{-1}$ stands for $\frac{b}{1+\varepsilon} \leq a \leq \frac{b}{1-\varepsilon}$ (with $\frac{b}{0}$ defined as ∞ when $b \neq 0$, and as 0 when $b = 0$). A *word* w over an alphabet Σ is a sequence $(w_1 \dots w_k)$ of length $|w| = k$ with each $w_i \in \Sigma$. λ is denoted as the empty word (of length 0). We further denote by Σ^* the set of all words (language) over Σ . For $w, w' \in \Sigma^*$, we denote by $w \cdot w'$ their concatenation. For $S \subseteq \Sigma^*$, we write $S \cdot w = \{w' \cdot w \mid w' \in S\}$.

³ We will release the code upon final acceptance and publication of this paper.

FPRAS For a problem that, given an input x of size s , to count a number $N(x) \in \mathbb{R}^+$, a *fully polynomial-time randomized approximation scheme* (FPRAS) is an algorithm that, given $x, \varepsilon > 0$, and $0 < \delta < 1$, runs in time polynomial in $s, 1/\varepsilon$ and $\log(1/\delta)$, and returns an estimate \tilde{N} with the guarantee that $\Pr[\tilde{N} \in (1 \pm \varepsilon)N(x)] \geq 1 - \delta$.

NFA A *non-deterministic finite automaton* (NFA) is a tuple $\mathcal{A} = (\mathcal{Q}, q_I, q_F, \mathcal{T})$ where \mathcal{Q} is a finite set of states, $q_I \in \mathcal{Q}$ is the initial state, $\mathcal{T} \subseteq \mathcal{Q} \times \Sigma \times \mathcal{Q}$ is a transition relation, and $q_F \in \mathcal{Q}$ is the final state. This research mainly examines the case when $\Sigma = \{0, 1\}$, though our algorithm is expandable to larger alphabet size. We assume a total order \prec on the states. A *run* of w on \mathcal{A} is a sequence $\rho = (q_0, \dots, q_{|w|})$ such that $q_0 = q_I$, $q_{|w|} = q_F$ and, for every $i < |w|$, $(q_i, w_{i+1}, q_{i+1}) \in \mathcal{T}$. A word w is *accepted* by $q \in \mathcal{Q}$, when there is a run of w on \mathcal{A} that ends on q . The *language* of a state q , denoted $\mathcal{L}(q)$, is the set of words accepted by q , and the language of \mathcal{A} is $\mathcal{L}(\mathcal{A}) = \mathcal{L}(q_F)$. For $n \in \mathbb{N}$, we define $\mathcal{L}_n(\mathcal{A})$ as the set of words of length n in $\mathcal{L}(\mathcal{A})$. For $q \in \mathcal{Q}$ and $b \in \Sigma$, the *b-predecessors* of q are given by a sequence $\text{pred}(q, b) = (q' \mid (q', b, q) \in \mathcal{T})$ ordered consistently with \prec . We also define $\text{pred}(q) = (q' \mid (q', 0, q) \in \mathcal{T} \text{ or } (q', 1, q) \in \mathcal{T})$, again with states ordered according to \prec .

Unrolling Given an NFA $\mathcal{A} = (\mathcal{Q}, q_I, q_F, \mathcal{T})$ and $n \in \mathbb{N}$, one may construct the *unrolled NFA* \mathcal{A}_n^u whose language is $\mathcal{L}_n(\mathcal{A})$ in time $\mathcal{O}(n|\mathcal{T}|)$. One can check whether $\mathcal{L}_n(\mathcal{A})$ is empty in time $\mathcal{O}(n|\mathcal{T}|)$; we hence assume $\mathcal{L}_n(\mathcal{A}) \neq \emptyset$. Since n will be fixed, we will just write $\mathcal{A}^u = (\mathcal{Q}^u, q_I^0, q_F^n, \mathcal{T}^u)$. We now describe the construction of \mathcal{A}^u . For each state $q \in \mathcal{Q}$ and $0 \leq \ell \leq n$, if q is reachable in \mathcal{A} by *some* word of length ℓ , then \mathcal{Q}^u contains a state q^ℓ , and \mathcal{T}^u ensures that q^ℓ is reachable by precisely *all* words of length ℓ that reach q in \mathcal{A} . Formally, q_I^0 is in \mathcal{Q}^u and, for every $0 \leq \ell < n$, if (q_1, b, q_2) is in \mathcal{T} and q_1^ℓ is in \mathcal{Q}^u , then $q_2^{\ell+1}$ is in \mathcal{Q}^u and $(q_1^\ell, b, q_2^{\ell+1})$ is in \mathcal{T}^u . We write $\mathcal{Q}^\ell = \{q^\ell \mid q \in \mathcal{Q} \text{ and } q \text{ is reachable by words of length } \ell\}$ and $\mathcal{Q}^{<\ell} = \mathcal{Q}^0 \cup \dots \cup \mathcal{Q}^{\ell-1}$ and similarly for $\mathcal{Q}^{\leq\ell}$, $\mathcal{Q}^{>\ell}$ and $\mathcal{Q}^{\geq\ell}$. Note that \mathcal{Q}^0 contains only q_I^0 . Graphically, we see unrolled automata as directed acyclic graphs (DAGs) where the states are vertices and the transitions are edges labeled by the transition symbol b . We will again assume some total order \prec on the states of \mathcal{A}^u . Since in this paper we work only with unrolled NFA, we drop the superscript from state names.

Derivation run Let $w \in \mathcal{L}(q)$. The derivation run $\text{run}(w, q)$ is defined inductively as follows:

- If $q = q_I$ then $w = \lambda$ and the only derivation run is $\text{run}(\lambda, q_I) = q_I$.
- If $q \neq q_I$ then let b be the last symbol of w , write $w = w' \cdot b$ and let $q' \in \text{pred}(q, b)$ be the first *b*-predecessor of q such that $w' \in \mathcal{L}(q')$. Then $\text{run}(w, q) = \text{run}(w', q') \xrightarrow{b} q$.

Last common prefix state Let R and R' be two runs in \mathcal{A}^u both starting at q_I . The *last common prefix state* of R and R' , denoted by $\text{lcps}(R, R')$, is k^{th} state of

R for the largest possible k such that the k^{th} prefix of R equals the k^{th} prefix of R' .

3 Algorithm

The following description is adapted from the original presentation of the `countNFA` algorithm in [8]. The overall goal is to compute a reliable approximation of $|\mathcal{L}_n(\mathcal{A})|$. The FPRAS algorithm begins by constructing the unrolled automaton $\mathcal{A}^u = (\mathcal{Q}^u, q_I, q_F, \mathcal{T}^u)$ for the given word length requirement n . It then processes the states of \mathcal{A}^u in a bottom-up manner, ensuring that all predecessors of a state q are processed before q itself.

For each state $q \in \mathcal{Q}^u$, the algorithm computes two key quantities: an estimate $p(q)$, which approximates $|\mathcal{L}(q)|^{-1}$, and a collection of sample sets $S^1(q), \dots, S^\gamma(q)$, which are all subsets of $\mathcal{L}(q)$. At a high level, for every state q with predecessors $\text{pred}(q) = (q_1, \dots, q_k)$, the algorithm performs the following steps:

1. It uses the sample sets $(S^r(q_i))_{i \in [k], r \in [\gamma]}$ and the estimates $(p(q_i))_{i \in [k]}$ from the predecessors of q to compute the new estimate $p(q)$.
2. It then constructs the new sample sets $(S^r(q))_{r \in [\gamma]}$ for state q using its estimate $p(q)$ and the predecessors' sample sets.

The algorithm finishes after processing the final state q_F , and returns the final count estimate $N(q_F) = 1/p(q_F)$.

3.1 `countNFA`

The `countNFA` procedure (Algorithm 1) serves as the main entry point. It first computes the unrolled automaton \mathcal{A}^u and determines the necessary hyperparameters, such as the number of sampling sets $\gamma = n_s n_t$, based on the desired tolerance ε and confidence δ . To amplify the success probability to at least $1 - \delta$, it executes n_u independent runs of the core routine, `countNFAcore` (Algorithm 2), and returns the median of their outputs as the final estimate of $|\mathcal{L}_n(\mathcal{A})|$. We will return to the calculation of the four parameters n_s , n_t , n_u , and θ later in the paper.

Algorithm 1: `countNFA`($\mathcal{A} = (\mathcal{Q}, q_I, q_F, \mathcal{T})$, n , ε , δ)

- 1 Compute the unrolled NFA $\mathcal{A}^u = (\mathcal{Q}^u, q_I, q_F, \mathcal{T}^u)$ of \mathcal{A} for length n
- 2 $(n_s, n_t, n_u, \theta) \leftarrow \text{computeHyperparams}(|\mathcal{Q}^u|, \delta, \varepsilon)$
- 3 **for** $j \leftarrow 1$ **to** n_u **do**
- 4 **let** $\text{est}_j \leftarrow \text{countNFAcore}(\mathcal{A}^u, n, n_s, n_t, \theta)$
- 5 **return** $\text{median}(\text{est}_1, \dots, \text{est}_{n_u})$

3.2 countNFAcore

The procedure `countNFAcore` (Algorithm 2) is the core of the FPRAS. For the initial state q_I , it sets $p(q_I) = 1$ (line 1) and initializes all sample sets $S^r(q_I)$ to contain only the empty word, $\{\lambda\}$ (lines 3-4). The algorithm then proceeds layer by layer through the unrolled automaton. For each layer \mathcal{Q}^i , it iterates through every state $q \in \mathcal{Q}^i$ and calls `estimateAndSample` to compute the probability estimate $p(q)$ and the corresponding sample sets. To efficiently perform membership checks, a cache is maintained and updated for each layer via calls to `computeCache(i)` and `updateCache(i)`. To ensure a polynomial running time, the procedure terminates and returns 0 if the total number of samples exceeds the threshold θ (line 10).

Algorithm 2: countNFAcore($\mathcal{A}^u, n, n_s, n_t, \theta$)

```

1  $p(q_I) \leftarrow 1$ 
2 computeCache(0)
3 for  $r \leftarrow 1$  to  $n_s n_t$  do
4    $S^r(q_I) \leftarrow \{\lambda\}$ 
5   for  $i \leftarrow 1$  to  $n$  do
6     computeCache(i)
7     for  $q \in \mathcal{Q}^i$  do
8       estimateAndSample(q)
9       if  $\sum_{r \in [n_s n_t], q' \in \mathcal{Q}^u} |S^r(q')| \geq \theta$  then
10         $\leftarrow 0$ 
11     updateCache(i)
12 return  $N(q_F)$ 

```

3.3 estimateAndSample

Given a state q with predecessors $\text{pred}(q) = (q_1, \dots, q_k)$, the `estimateAndSample` procedure computes $p(q)$ and the sample sets $(S^r(q))_{r \in [\gamma]}$. At this stage, for each predecessor q_i , an estimate $p(q_i)$ is known such that for any word $w \in \mathcal{L}(q_i)$, the probability of w being in a sample set $S^r(q_i)$ is $p(q_i)$.

The procedure begins by computing $\rho(q) = \min(p(q_1), \dots, p(q_k))$ (line 1). It then uses the `reduce` procedure to normalize the predecessor sample sets (lines 2-3), creating temporary sets $(\bar{S}^r(q, q_i))_{r \in [\gamma], i \in [k]}$ where the sampling probability for any word is uniformly $\rho(q)$. Next, the `union` procedure is called to combine these normalized samples into new sets $(\hat{S}^r(q))_{r \in [\gamma]}$ (lines 4-5). For any word $w \in \mathcal{L}(q)$, the probability of w being in $\hat{S}^r(q)$ is now $\rho(q)$, making $\rho(q)^{-1} |\hat{S}^r(q)|$ an unbiased estimator for $|\mathcal{L}(q)|$.

To obtain a robust estimate, the “median-of-means” technique is applied (lines 6-8). The $\gamma = n_s n_t$ estimates are partitioned into n_t batches of size n_s ,

the mean estimation is computed separately for each batch, then the median of these means is taken. The inverse of this median is stored in $\hat{\rho}(q)$. Since $|\mathcal{L}(q)| \geq |\mathcal{L}(q_i)|$, it is expected that the final probability $p(q)$ is no larger than any $p(q_i)$. The algorithm thus sets $p(q) = \min(\rho(q), \hat{\rho}(q))$ (line 9). Finally, the procedure calls `reduce` one last time on the sets $\hat{S}^r(q)$ to produce the final sample sets $S^r(q)$ (lines 11-12), ensuring that for every $w \in \mathcal{L}(q)$, we have $\Pr[w \in S^r(q) \mid w \in \mathcal{L}(q)] = p(q)$.

Algorithm 3: estimateAndSample(q) with $\text{pred}(q) = (q_1, \dots, q_k)$

```

1  $\rho(q) \leftarrow \min(p(q_1), \dots, p(q_k))$ 
2 for  $r \leftarrow 1$  to  $n_s n_t$  and  $i \leftarrow 1$  to  $k$  do
3    $\bar{S}^r(q, q_i) \leftarrow \text{reduce} \left( S^r(q_i), \frac{\rho(q)}{p(q_i)} \right)$ 
4 for  $r \leftarrow 1$  to  $n_s n_t$  do
5    $\hat{S}^r(q) \leftarrow \text{union} \left( q, \bar{S}^r(q, q_1), \dots, \bar{S}^r(q, q_k) \right)$ 
6 for  $j \leftarrow 1$  to  $n_t$  do
7    $M^j(q) \leftarrow \frac{1}{n_s \rho(q)} \sum_{r=1}^{n_s} |\hat{S}^{n_s(j-1)+r}(q)|$ 
8    $\hat{\rho}(q) \leftarrow \text{median}(M^1(q), \dots, M^{n_t}(q))^{-1}$ 
9    $p(q) \leftarrow \min(\rho(q), \hat{\rho}(q))$ 
10   $N(q) \leftarrow \frac{1}{p(q)}$ 
11 for  $r \leftarrow 1$  to  $n_s n_t$  do
12    $S^r(q) \leftarrow \text{reduce} \left( \hat{S}^r(q), \frac{p(q)}{\rho(q)} \right)$ 

```

3.4 union

The purpose of `union` (Algorithm 4) is to construct a sample set S' for a state q from the sample sets S_1, \dots, S_k from $\text{pred}(q)$ with respect to their order $q_1 \prec q_2 \prec \dots \prec q_k$. A key challenge is that a word may be reachable in q via multiple predecessors, leading to duplicates. To ensure each word is generated through a unique path, the algorithm only includes words corresponding to their *derivation run*. Specifically, for a transition on symbol $b \in \Sigma$ from predecessors q_i and q_j (with $q_i \prec q_j$) to q , a word $w \cdot b$ is added to S' from a sample $w \in S_i$ only if q_i is the first predecessor in the order \prec such that $w \in \mathcal{L}(q_i)$. This check for uniqueness is made efficient by using a precomputed cache, as detailed in [8].

3.5 reduce

The `reduce` method (Algorithm 5) adjusts the sampling density of a set. Given an input set S and a target probability $p \in [0, 1]$, it constructs a new set S' by retaining each element $s \in S$ with probability p , independently of all other elements.

Algorithm 4: $\text{union}(q, S_1, \dots, S_k)$ (informal)where q has k predecessors ordered as $q_1 \prec \dots \prec q_k$ and $S_i \subseteq \mathcal{L}(q_i)$ for all $1 \leq i \leq k$

```

1  $S' \leftarrow \emptyset$ 
2 for  $b \in \{0, 1\}$  do
3   Let  $J$  be the subset of  $\{1, \dots, k\}$  such that  $(q_j \mid j \in J) = b\text{-pred}(q)$ 
4   for  $j \in J$  and  $w \in S_j$  do
5     if  $w \notin \mathcal{L}(q_\ell)$  for every  $\ell < j$  with  $\ell \in J$  then
6       add  $w \cdot b$  to  $S'$ 
7 return  $S'$ 

```

Algorithm 5: $\text{reduce}(S, p)$ with $p \in [0, 1]$

```

1  $S' \leftarrow \emptyset$ 
2 for  $s \in S$  do
3   add  $s$  to  $S'$  with probability  $p$ 
4 return  $S'$ 

```

4 Technical Contributions

We now present **FastNFA**, a practical FPRAS for the #NFA algorithm implemented in C++ based on the original **countNFA** algorithm outlined in Section 3. **FastNFA** incorporates several theoretical and engineering enhancements, which we document here.

4.1 Optimization of parameters n_t and n_u

At the start of the algorithm, **countNFA** computes four parameters— n_s , n_t , n_u , and θ —that largely determine its runtime. Parameters n_s and n_t correspond to the median-of-means estimator in lines 6–8 of Algorithm 3: n_s specifies the number of sampling sets used to compute each mean, while n_t is the number of means whose median is taken. Their product, $n_s n_t = \gamma$, gives the total number of sampling sets computed per automaton state. On the other hand, the parameter n_u denotes how many times the **countNFACore** routine is repeated to reduce the overall error probability. Finally, θ is a hard limit on the total number of words stored across all sampling sets (line 10 of Algorithm 2).

For fixed inputs ε , δ and unrolled automaton \mathcal{Q}^u , and defining $\kappa := \varepsilon/(1 + \varepsilon)$, the original values of these parameters (as presented in [8]) are:

$$\begin{aligned}
n_s &= \left\lceil 4(n+1) \frac{(1+\kappa)^2}{\kappa^2(1-\kappa)} \right\rceil & n_t &= \lceil 8 \ln(16|\mathcal{Q}^u|) \rceil \\
n_u &= \lceil 8 \ln\left(\frac{1}{\delta}\right) \rceil & \theta &= \lceil 16(1+\kappa)n_s n_t |\mathcal{Q}^u| \rceil
\end{aligned}$$

Table 1: Descriptive statistics of the ratio (i.e., estimate divided by exact value) between the value of $|\mathcal{L}_n(\mathcal{A})|$ estimated by `countNFA` with $(\varepsilon, \delta) = (0.8, 0.36)$ using the original n_s , n_t , n_u parameters [8] and the exact count obtained by `BruteNFA` on 298 randomly-generated graphs. Note that all empirical results fall well within the theoretical guarantee.

n	μ	σ	min	25%	50%	75%	max	Theoretical Guarantee
298	0.9994	0.0059	0.9375	0.9980	1.0000	1.0020	1.0087	[0.2, 1.8]

We found that these parameters are prohibitively large for practical use. For example, setting $\varepsilon = 0.8$ and $\delta = 0.36$ (values used in practice, for instance, in [9]), we have that $n_s n_t \approx 608(n+1) \ln(16|\mathcal{Q}^u|)$ and $n_u = 9$. That means we have to compute about $608(n+1) \ln(16|\mathcal{Q}^u|)$ sampling sets for *each* state in the unrolled automaton (Algorithm 3), and repeat the entire procedure $n_u = 9$ times (Algorithm 1). This leads to impractically long runtimes in most cases.

Empirical Study of Tightness We first sought to better understand *empirically* the impact of n_s , n_t , and n_u parameters on the output approximation quality. To do this, we developed an implementation of the FPRAS algorithm documented above in Section 3, as well as a brute force solution (documented in Algorithm 8 in Appendix G) for reference. Our experiments (Table 1) on 298 randomly-generated NFAs showed that estimates produced by `countNFA` always fell within a 10% tolerance (i.e., $N(q_F) \in (1 \pm \varepsilon)|\mathcal{L}(q_F)|$ is always satisfied with $\varepsilon = 0.1$). Since the accuracy observed in practice is much tighter than the theoretical guarantee of an 80% tolerance implied by the parameter $\varepsilon = 0.8$, this suggests that some of the bounds of the original analysis can be improved. Additionally, we noticed that the threshold θ is never reached in practice. We investigate this direction further below.

Optimizing n_u Recall that `countNFA` uses the median as a variance reduction technique in two key portions of the algorithm: first, in the median-of-means for estimating $|\mathcal{L}(q)|$ for every $q \in \mathcal{Q}^u$ (line 8 of Algorithm 3); and second, in line 5 of Algorithm 1, when we take the median of n_u independent estimates $\{\text{est}_j\}_{1 \leq j \leq n_u}$, given by independent runs of `countNFAcore`.

Using the median is a natural idea. Take for example the median of independent `countNFAcore` runs just discussed. It is shown in [8] that for a single `countNFAcore` output `est`, we have $\Pr[\text{est} \notin (1 \pm \varepsilon)|\mathcal{L}(\mathcal{A})|] \leq 1/4$. Nevertheless, we desire our final estimate (i.e., the output of `countNFA`) to fall within $(1 \pm \varepsilon)|\mathcal{L}(\mathcal{A})|$ with small failure probability δ . To reduce the probability of error from $1/4$ to δ , we compute n_u independent estimates by running `countNFAcore` several times, and report the median. We know that if the median was outside of the target range $(1 \pm \varepsilon)|\mathcal{L}(\mathcal{A})|$, then strictly more than $n_u/2$ of our independent estimates

were outside of the range. Formally:

$$\Pr \left[\underset{1 \leq j \leq n_u}{\text{median est}_j} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})| \right] \leq \Pr \left[\sum_{j=1}^{n_u} \mathbb{1} [\text{est}_j \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|] > \frac{n_u}{2} \right]$$

Observing that $\mathbb{1} [\text{est}_j \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|] \sim \text{Bernoulli}(1/4)$, we have the sum of indicator functions is a binomial random variable, resulting in:

$$\Pr \left[\underset{1 \leq j \leq n_u}{\text{median est}_j} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})| \right] \leq \Pr \left[\text{Binomial} \left(n_u, \frac{1}{4} \right) > \frac{n_u}{2} \right]$$

The upper tail of the binomial distribution can be computed directly for arbitrary n_u , or bounded above using Chernoff's inequality as is done in [8]. In any case, if we guarantee that n_u is large so that $\Pr [\text{Binomial}(n_u, 1/4) > n_u/2] \leq \delta$, then the probability of our median-based estimator falling outside the desired $(1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|$ range will also be at most δ .

In [8], the Chernoff inequality is applied to derive the bound

$$\Pr \left[\text{Binomial} \left(n_u, \frac{1}{4} \right) > \frac{n_u}{2} \right] \leq e^{-n_u/8},$$

which implies that setting $n_u = \lceil 8 \ln(1/\delta) \rceil$ suffices to achieve the desired confidence level δ . However, computing the binomial tail exactly allows us to obtain a smaller value for the parameter n_u , defined as

$$n_u = \underset{n \in \mathbb{N}}{\text{argmin}} \left\{ \Pr \left[\text{Binomial} \left(n, \frac{1}{4} \right) > \frac{n}{2} \right] \leq \delta \right\}.$$

Since the original Chernoff-based value $\lceil 8 \ln(1/\delta) \rceil$ already ensures the same confidence level, our refined value of n_u must, by construction, be less than or equal to the original one. This reasoning will serve as a template for similar refinements introduced later in our analysis, motivating the following notation.

Definition 1. For every $0 \leq p, \alpha \leq 1$, we define:

$$\text{chase}(p, \alpha) = \underset{n \in \mathbb{N}}{\text{argmin}} \left\{ \Pr \left[\text{Binomial}(n, p) > \frac{n}{2} \right] \leq \alpha \right\}$$

If there is no such n that satisfies the requirement, we define $\text{chase}(p, \alpha) = \infty$.

So we have our refined parameter $n_u = \text{chase}(1/4, \delta)$. The terminology comes from the idea that we are given an error probability p and we are *chasing* a smaller error probability α . Lemma 6 in Appendix D guarantees that $\text{chase}(\frac{1}{4}, \delta)$ is finite for every value of δ .

Optimizing n_t In line 8 of Algorithm 3, we take the median of n_t estimates $M^j(q)$ to reduce the chance of large errors in approximating $|\mathcal{L}(q)|$. Following the same reasoning used to derive a reduced value for n_u , we can similarly obtain a smaller value for n_t , defined as follows:

$$n_t = \text{chase} \left(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|} \right)$$

The correctness of this refinement is more delicate. Roughly, the proof of correctness of `countNFA` in [8] requires us to guarantee:

$$\Pr \left[\underset{1 \leq j \leq n_t}{\text{median}} M^j(q) \notin |\mathcal{L}(q)|(1 \pm \varepsilon) \right] \leq \frac{1}{16|\mathcal{Q}^u|} \quad (1)$$

Moreover, since we are able to show that:

$$\Pr [M^j(q) \notin |\mathcal{L}(q)|(1 \pm \varepsilon)] \leq \frac{1}{4}$$

then we have that $n_t = \text{chase}(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|})$ is the smallest number of repetitions needed to the ensure inequality (1), which is also ensured by the original, Chernoff-based parameter value $\lceil 8 \ln(16|\mathcal{Q}^u|) \rceil$. This description is not precise because the family of random estimates $\{M^j(q)\}_{1 \leq j \leq n_t}$ is not mutually independent, so a more careful analysis is needed for validating the use of chase (see Appendix A).

From constants to variables Summarizing the analysis on n_s and n_t performed above, the refined parameter values are as follows:

$$n_u = \text{chase} \left(\frac{1}{4}, \delta \right) \quad n_t = \text{chase} \left(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|} \right) \quad (2)$$

While the other two parameters remain unchanged, namely

$$n_s = \left\lceil 4 \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \right\rceil \quad \theta = \lceil 16 \cdot (1+\kappa)n_s n_t |\mathcal{Q}^u| \rceil \quad (3)$$

The multiplicative constants 4 and 16 in n_s and θ , respectively, originate from arbitrary choices made in the proof of [8] to guarantee the algorithm's correctness. However, these choices do not account for their effect on the running time. Similarly, the value of $n_t = \text{chase}(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|})$ arises from the somewhat arbitrary decision to chase precisely $\frac{1}{16|\mathcal{Q}^u|}$. Theorem 1 shows that many of these constants can be allowed to vary freely, leading to the following theorem whose proof is given in Appendix C.

Theorem 1. *Let x , y , and z be positive real numbers, with $x, y > 1$ and let:*

$$\begin{aligned} n_t &= \text{chase} \left(\frac{1}{x}, \frac{1}{z|\mathcal{Q}^u|} \right) & n_u &= \text{chase} \left(\frac{1}{y} + \frac{2}{z}, \delta \right) \\ n_s &= \left\lceil x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \right\rceil & \theta &= \lceil y \cdot (1+\kappa)n_s n_t |\mathcal{Q}^u| \rceil \end{aligned}$$

Then:

$$\Pr \left[\underset{1 \leq j \leq n_u}{\text{median est}_j} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})| \right] \leq \delta$$

provided that n_t and n_u are finite.

Thus, for every trio of valid values of x, y, z , we can obtain different values for parameters n_s, n_t, n_u and θ that still preserve the guarantees of correctness. The benefit of introducing these new variables is that we can now design a procedure to compute the optimal values of x, y , and z that maximize the algorithm's execution speed. This procedure will be detailed in Section 4.2.

Observe that $x = 4, y = 16, z = 16$ recovers the parameters in (2) and (3). Since these parameters now have smaller values or remain unchanged with respect to the ones reported in [8], the asymptotic complexity of our algorithm remains the same.

4.2 Exploiting Parallelism

Recall that n_u represents the number of times the `countNFAcore` procedure must be repeated to achieve δ -guarantees on the probability of success. Since these n_u executions are independent, they can be parallelized across multiple cores (see Section 4.4). However, for larger values of δ , the optimal number of repetitions $n_u = \text{chase}(1/y + 2/z, \delta)$ is typically small, often just one or two. For instance, for the confidence level $\delta = 0.36$ and the original $x = 4, y = 16$, and $z = 16$, we have $n_u = 1$. Consequently, the available parallelism of modern multi-core processors remains largely underutilized in the current setting.

As mentioned in Section 4.1, the overall wall-clock runtime of the algorithm is largely governed by n_s and n_t . Each automaton state requires $\gamma = n_s n_t$ sampling sets, and the most computationally expensive steps involve manipulating these sets (e.g., `reduce` and `union` operations).

In the baseline configuration, the parameters are set to $x = 4, y = 16$, and $z = 16$. Our objective is to adjust these values to minimize $n_s n_t$ while maintaining the constraint $n_u \leq C$, where C denotes the number of processor cores available. Let $\mathfrak{x}, \mathfrak{y}, \mathfrak{z}$ be the optimal parameters for x, y and z respectively. We thus have the following optimization problem:

$$\begin{aligned} (\mathfrak{x}, \mathfrak{y}, \mathfrak{z}) &= \underset{x, y, z}{\text{argmin}} \gamma \\ \text{subject to } n_u &\leq C \end{aligned}$$

If we define $w := \frac{1}{y} + \frac{2}{z}$ and substitute n_s and n_t with the expressions featured in Theorem 1, we have:

$$\begin{aligned} (\mathfrak{x}, \mathfrak{y}, \mathfrak{z}) &= \underset{x, y, z}{\text{argmin}} \left[x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \right] \cdot \text{chase}\left(\frac{1}{x}, \frac{1}{z|Q^u|}\right) \\ \text{subject to } \text{chase}(w, \delta) &\leq C \quad \text{and} \quad w = \frac{1}{y} + \frac{2}{z} \end{aligned}$$

An approximate solution to this optimization problem can be obtained by finding optimal values for w , y , z , and x , in that order. To minimize γ , we can proceed step by step:

Step 1 Determine the largest value of w such that $\text{chase}(w, \delta) \leq C$, and denote it by \mathfrak{w} . Since the function $\text{chase}(\cdot, \delta)$ is monotonically increasing (Lemma 5 in Appendix D), we can find this maximal w efficiently using a binary search. Because w is a continuous variable, the binary search stops when the difference between the upper and lower bounds becomes smaller than a predefined tolerance η . In practice, we found that setting $\eta = \delta/2^{10}$ provides a good balance between accuracy and computation time. Algorithm 7 in Appendix G describes the procedure for finding \mathfrak{w} . After determining \mathfrak{w} , our optimization constraint becomes $\frac{1}{y} + \frac{2}{z} \leq \mathfrak{w}$. From this, it follows directly that $z < \frac{2}{\mathfrak{w}}$.

Step 2 Set y to a sufficiently large constant. In our experiments, we used $y = 10^6 = \mathfrak{y}$. The variable y appears only in the expression $\theta = \lceil y(1 + \kappa)n_s n_t |\mathcal{Q}^u| \rceil$, which represents the maximum number of words stored across all sampling sets and all states. The algorithm terminates if this threshold is reached (line 10 of Algorithm 2). In practice, as reported in Section 4.1, this threshold was never reached for the original setting $y = 16$. Therefore, increasing y does not affect the algorithm’s wall-clock runtime or its asymptotic complexity.

Step 3 Set $\mathfrak{z} = \frac{2}{\mathfrak{w} - \frac{1}{\mathfrak{y}}}$. This value represents the smallest z allowed by the optimization constraint found in Step 1. We choose the smallest possible z because the function $n_t = \text{chase}\left(\frac{1}{x}, \frac{1}{z|\mathcal{Q}^u|}\right)$ is monotonically increasing in z .

Note that \mathfrak{z} is very close to the theoretical lower bound $\frac{2}{\mathfrak{w}}$, since we made \mathfrak{y} very large.

Step 4 With $y = \mathfrak{y}$ and $z = \mathfrak{z}$ fixed, the problem reduces to:

$$n_s(x) = \left\lceil x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \right\rceil \quad n_t(x) = \text{chase}\left(\frac{1}{x}, \frac{1}{\mathfrak{z}|\mathcal{Q}^u|}\right) \quad \mathfrak{x} = \operatorname{argmin}_x n_s(x) n_t(x)$$

Treat the objective as a black box and perform a linear search over $x \in [1, b]$, where b is chosen such that we can establish $\mathfrak{x} \leq b$ even without knowing \mathfrak{x} a priori. Start at $x = 1$ because $\text{chase}(p, \alpha)$ is defined only for probabilistic inputs (here $p = 1/x$), and stop at $x = b$ since the optimum cannot exceed this bound. It can be shown that for $\mathfrak{b} = \frac{\kappa^2(1-\kappa)}{(n+1)(1+\kappa^2)} n_s(4) n_t(4)$ we can guarantee $\mathfrak{x} \leq \mathfrak{b}$, so set $b = \mathfrak{b}$ as the search upper bound (see Appendix E for a proof of this fact). A linear search step size of 10^{-3} works well in practice and is used in our experiments.

4.3 Deterministic Line Optimization

Many NFAs, when unrolled, exhibit long sequences of states in which no nondeterminism is present. For example, consider encoding an NFA with a non-binary alphabet Σ into one with the binary alphabet $\{0, 1\}$: each transition over a character $a \in \Sigma$ can be encoded with a chain of $\mathcal{O}(\log(|\Sigma|))$ states using only transitions labeled with binary characters. Processing these chains one state at a time is inefficient, as the estimation and sampling steps are redundant due to the lack of nondeterminism. To exploit this common structure, we introduce an optimization for what we term *deterministic lines*.

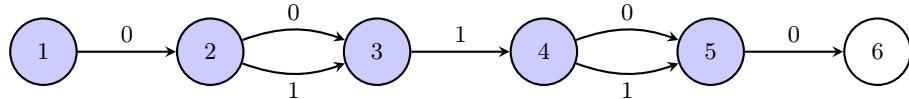


Fig. 1: Example of a deterministic line (highlighted in blue) within a DAG of length $l = 5$ with $d = 2$ double-edge transitions. It is represented with the two masks: $L_S = 0010$ and $L_F = 1010$.

Definition 2 (Deterministic line). A *deterministic line* is a maximal path of states (q_1, q_2, \dots, q_l) in an unrolled NFA such that:

- Every state q_i in the path, for $i \in [1, \dots, l]$, has exactly one successor.
- Every state q_j in the path, for $j \in [2, \dots, l]$, has exactly one predecessor.

Deterministic line representation We can represent the structure of a deterministic line of length l containing d double-edge transitions, where each double-edge corresponds to a pair of transitions labeled “0” and “1” between the same two consecutive states, using two bitmasks:

- **Structure Mask (L_S):** An l -bit vector where the i -th bit corresponds to the i -th transition: it is set on 0 for a transition on 0, and to 1 for a transition on 1. For double-edge transitions, this bit can be set to 0 as it will be ignored.
- **Fixed-Position Mask (L_F):** An l -bit vector where the i -th bit corresponds to the i -th transition: it is set on 0 if the transition is a double-edge transition, and to 1 otherwise.

Accelerating Computation along Deterministic Lines Instead of applying the standard `estimateAndSample` procedure to every state in a deterministic line, we can compute the final estimate and sample sets for q_l directly from the information at q_1 (the exact implementation is documented in Algorithm 9 in Appendix G). This provides a significant computational shortcut.

Theorem 2. *Let a deterministic line from q_1 to q_l contain d double-edge transitions. The language size and sampling probability at q_l can be computed deterministically from their values at q_1 :*

$$|\mathcal{L}(q_l)| = 2^d \cdot |\mathcal{L}(q_1)| \quad p(q_l) = \frac{p(q_1)}{2^d}$$

Consequently, the full iterative estimation process for intermediate states of the line can be bypassed.

Efficient Membership Checking with Bitwise Operations The deterministic line optimization provides significant performance and memory benefits by avoiding computation and storage for intermediate states. However, this creates a challenge for the `union` procedure, which relies on checking if a word w from one predecessor's sample set $S(q_i)$ also belongs to the language of another predecessor, $\mathcal{L}(q_j)$, where q_j might be the end of a deterministic line. Since we have discarded the intermediate cache information for states within the line, a direct lookup is impossible. To solve this, we introduce a highly efficient membership check that leverages bitwise operations.

Theorem 3. *Given a word w , let its l -bit suffix be w_{suffix} . The suffix is consistent with a line's structure (represented by L_S and L_F) if and only if:*

$$(w_{suffix} \oplus L_S) \wedge L_F = 0$$

where \oplus is the bitwise XOR operation and \wedge is the bitwise AND operation.

The complete membership check is described in Algorithm 11 in Appendix G, which is used to reconstruct cache information on-the-fly when processing a state that follows a deterministic line.

Lexicographical Ordering for Correct Caching The deterministic line optimization introduces an asymmetry in caching. Because we discard cache information for intermediate states within a line, we can perform certain membership checks but not others:

- **Possible Check:** Given a word w from a standard sample set $S(q_i)$, we *can* check if $w \in \mathcal{L}(q_j)$, where q_j ends a deterministic line. This is done efficiently using the bitwise `containsWord` method.
- **Impossible Check:** Given a word w' from a deterministic line's sample set $S(q_j)$, we *cannot* easily check if $w' \in \mathcal{L}(q_i)$ for some other state q_i . The necessary derivation information for w' was never stored in the cache matrix.

The `union` procedure resolves non-determinism by iterating through a state's predecessors in a fixed order. To prevent the “impossible check” from ever being needed, we must ensure the “possible check” is always the one performed. We achieve this by establishing a new global state ordering, \prec' , that gives lexicographical priority to states that are part of a deterministic line. This new ordering is enforced by sorting the states within each layer and putting the states at the end of each deterministic line first.

4.4 Other Engineering Enhancements

Handling Large and High-precision Floating-point Numbers The size of a language $|\mathcal{L}(q)|$ can easily exceed the representational limits of standard integer types in C++. Consequently, the algorithm requires support for arbitrary-precision integers. To address this requirement, we employ the data types provided by the GNU Multiple Precision Arithmetic Library (GMP) [5], which enable accurate and reliable numerical computations throughout the algorithm.

Merging the Two `reduce` Calls In the `estimateAndSample` procedure, the `reduce` method is invoked twice for a given state q with predecessor q_i : at the beginning of the iteration processing q ,

$$\text{reduce}\left(S^r(q_i), \frac{\rho(q)}{p(q_i)}\right)$$

and at the end of the previous iteration while processing q_i ,

$$\text{reduce}\left(\widehat{S}^r(q_i), \frac{p(q_i)}{\rho(q_i)}\right).$$

Since these calls are independent, we combined them into a single invocation:

$$\text{reduce}\left(S^r(q_i), \frac{\rho(q)}{\rho(q_i)}\right), \quad \frac{\rho(q)}{p(q_i)} \cdot \frac{p(q_i)}{\rho(q_i)} = \frac{\rho(q)}{\rho(q_i)}.$$

This optimization produces a modest performance improvement by reducing the number of `reduce` calls without altering the algorithm's correctness.

Memory Management The algorithm requires the generation of sampling sets for each state q to estimate the size of the language $\mathcal{L}(q)$. In its original form, as presented in the reference work, the algorithm requires storing $S^r(q_i)$, $\widehat{S}^r(q)$, and $\bar{S}^r(q, q_i)$ for all $r \in [1, \dots, \gamma]$, $q \in \mathcal{Q}^u$, and $q_i \in \text{pred}(q)$. In practice, such an approach is impractical, as it quickly leads to memory exhaustion.

An initial optimization consisted of storing sampling sets only for the current and immediately preceding layers. A similar strategy was applied to other data structures, such as `cachei`, where only the current layer is retained in memory.

Subsequently, we observed that three separate data structures were still being used to store samples, even though $\widehat{S}^r(q)$ and $\bar{S}^r(q, q_i)$ functioned solely as temporary storage during the calculation of $S^r(q_i)$. To address this, we slightly adapt the logic of `estimateAndSample` and `union` (see Algorithm 12 and 13 in Appendix G) so that the samples are reduced and merged on-the-fly, thus eliminating the need for these additional storage structures. The `reduce` logic is implemented directly inside `union` and no longer requires a separate method. This modification enables the removal of $\widehat{S}^r(q)$ and $\bar{S}^r(q, q_i)$, improving memory efficiency and using data locality for faster access.

Profiling revealed that memory allocation and access were among the main performance bottlenecks. Consequently, we applied several best practices to further optimize memory management, including pre-allocation and the use of references rather than value copying, resulting in a substantial improvement in execution time.

Caching We use the dense matrix data type from the Eigen library [6] to store caches (see Algorithm 2) as it allows for efficient matrix multiplication and memory allocation. In addition, to access $\text{cache}_i(w, q)$ as required in the practical implementation of `union` (see Algorithm 14 in Appendix G, line 5), we maintain a hash table to map the words w into the matrix’s row index number.

Parallelization Recall that the `countNFA` procedure, described in Algorithm 1, requires n_u runs of `countNFAcore`, where n_u is calculated according to Section 4.1. Because each execution of `countNFAcore` is independent, we enable its parallel execution using the OpenMP API [10]. This parallelization allows an execution time reduction by an approximate factor of n_u , at the cost of increased memory consumption, as each independent run requires its own set of data structures.

5 Empirical Evaluation

To assess the practical performance of our proposed approach, we conducted an extensive empirical study. This work presents the first known implementation of the underlying theoretical framework, for which no standard benchmarks were previously available. Our evaluation is therefore designed to answer three primary research questions:

- RQ 1** What is the impact in performance of each of our optimizations in Section 4, and how do they compare to a brute force approach?
- RQ 2** How does the presence of deterministic structures in the input graphs impact the performance of the algorithm?
- RQ 3** How accurate are the estimates computed by the final version of our algorithm in practice (i.e., are they better than the theoretical guarantees imply)?

Table 2: Descriptive statistics of the ratio (i.e., estimate divided by exact value) between the value of $|\mathcal{L}_n(\mathcal{A})|$ estimated by `FastNFA` with $(\varepsilon, \delta) = (0.8, 0.36)$ and the exact count obtained by `BruteNFA`, on 305 randomly-generated graphs. Note that all empirical results fall well within the theoretical guarantee.

n	μ	σ	min	25%	50%	75%	max	Theoretical Guarantee
305	1.0013	0.0105	0.9674	0.9986	1.0007	1.0045	1.0870	[0.2, 1.8]

Hardware and Benchmarks All experiments were performed on the NSCC Singapore ASPIRE2A cluster [1]. Each run was allocated 2 CPU cores, 32 GB of RAM, and a timeout of 300 seconds (5 minutes). Our benchmark suite comprises a large set of randomly generated 0/1-labeled directed acyclic graphs (DAGs), consisting of 12 random graphs for each layer count from 20 to 200 layers, totaling 2,172 samples. The benchmarks are categorized into four structural classes based on the ratio of total states to the number of layers: `_1x` ($|\text{states}| = |\text{layers}|$), `_2x` ($|\text{states}| = 2 \times |\text{layers}|$), `_3x`, and `_5x`.

Compared Algorithms We use an ablation study, evaluating five distinct approaches:

- `BruteNFA`: A baseline implementation (Algorithm 8) developed to provide exact counts via exhaustive enumeration. Its exponential complexity makes it a viable reference only for smaller instances.
- `countNFA`: A direct translation of the original theoretical algorithm described in Section 3 into code. As we will show, this version proved impractical for most cases.
- `FastNFAorig-params,no-det-opt`: An implementation of `countNFA` that further leverages the engineering optimizations described in Section 4.4.
- `FastNFAno-det-opt`: A more efficient version of `FastNFAorig-params,no-det-opt`, which incorporates not only the engineering enhancements but also the optimizations of the parameters n_s , n_t , and n_u described in Section 4.1.
- `FastNFA`: Our final proposed algorithm, which builds on `FastNFAno-det-opt` to integrate the deterministic line optimization described in Section 4.3.

Parameters In line with previous work on FPRAS evaluation [9], we set the tolerance to $\varepsilon = 0.8$ and the confidence to $\delta = 0.36$ in our experiments.

RQ1: Performance Impact of Optimizations Figure 2 provides a comprehensive answer to our first research question by aggregating the performance of all implementations across the entire benchmark suite. The plot clearly illustrates the impact of both our theoretical and engineering contributions. The `BruteNFA` method, while exact, is quickly overwhelmed by its exponential complexity. Our first implementation of the original `countNFA` algorithm proved even less practical: it not only performed worse than `BruteNFA` but failed on the vast majority of the benchmark suite due to timeouts or memory exhaustion.

Our first attempt of a practical solution, `FastNFAorig-params,no-det-opt`, focused on the engineering enhancements described in Section 4.4. While this version offered a drastic improvement over `countNFA`, empirical evaluation revealed a crucial bottleneck. Its poor scaling was a direct consequence of the large number of sampling sets, determined by the hyperparameter $\gamma = n_s \cdot n_t$. Consequently, `FastNFAorig-params,no-det-opt` still underperformed the `BruteNFA` baseline on most instances. This finding underscored a key insight: engineering enhancements alone were insufficient, and a truly practical implementation required theoretical changes to the algorithm’s hyperparameters. The true breakthrough is evident in

the performance of $\text{FastNFA}^{\text{no-det-opt}}$: by combining our theoretical contributions with engineering optimizations, this version exhibits the expected polynomial-time behavior, solving a substantial portion of the benchmark suite. Finally, FastNFA , the final version of our algorithm that also incorporates the deterministic line optimization from Section 4.3, shows the best overall performance.

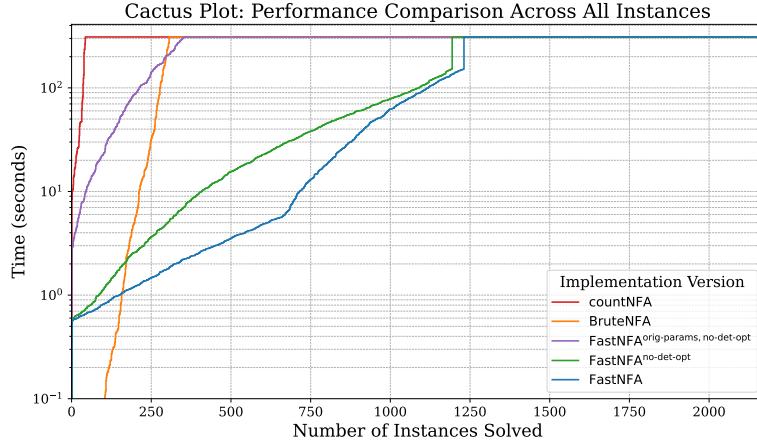


Fig. 2: Cactus plot comparing the performance of the implementations across the entire benchmark suite. The y -axis is on a logarithmic scale.

RQ2: Impact of Deterministic Structures The impact of deterministic structures is best analyzed by comparing performance across different graph categories, as shown in Figure 2. To quantify the structural differences, we measured the average *determinism ratio*, as the total number of states occurring as part of some deterministic lines, divided by the total number of states. The determinism ratio for each class of benchmarks is as follows: `_1x` (98.71%), `_2x` (70.87%), `_3x` (46.93%), and `_5x` (26.45%).

The `_1x` graphs, with a nearly pure deterministic structure, provide a clear showcase for the optimization. As seen in Figure 3a, our final algorithm leverages these lines to achieve a dramatic performance improvement. This powerful effect is characteristic of any benchmark class featuring such structures.

Conversely, as the determinism ratio decreases across the `_2x`, `_3x`, and `_5x` categories, the performance of our final version increasingly converges with that of the standard `countNFA`, as shown in Figures 3b–3d. This is a crucial result, as it demonstrates that our optimization incurs no measurable overhead on graphs lacking deterministic lines, confirming its effectiveness as a purely opportunistic and beneficial enhancement.

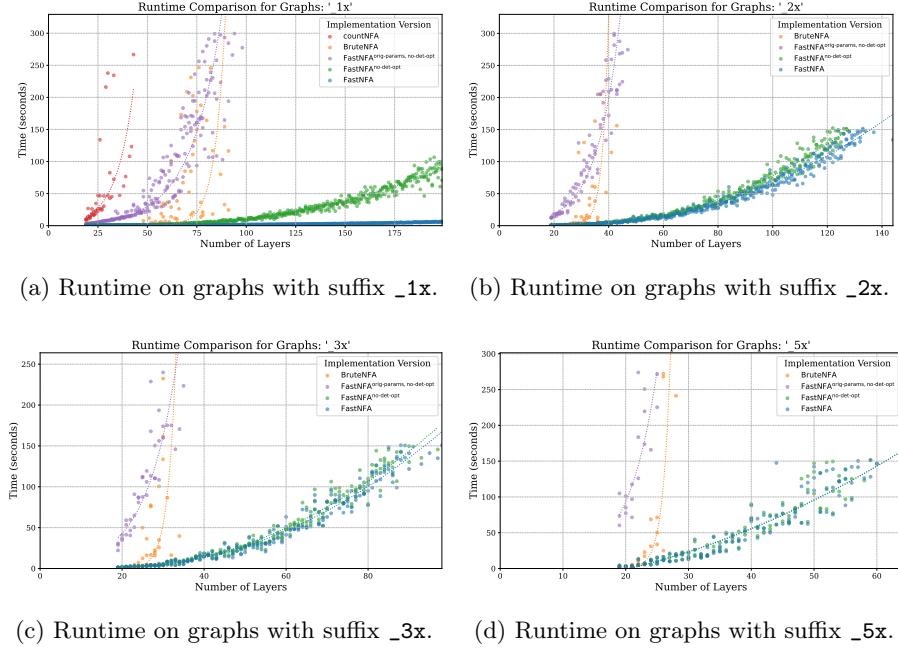


Fig. 3: Runtime performance comparison on different graph categories.

RQ3: Accuracy of the Final Algorithm The empirical accuracy of our final algorithm is summarized in Table 2. For all instances where an exact count was available from our brute-force solver, we validated the output of our FPRAS. The results confirm that all estimates were well within the theoretical bounds as constrained by $\varepsilon = 0.8$. Furthermore, the observed average and maximum relative errors were significantly lower than this bound, underscoring the reliability of our approach in practice.

6 Conclusion

We introduce **FastNFA**, a practical tool for approximating the number of words accepted by an NFA. Experimental results validated the efficiency of the novel optimizations used. In future work, we would like to further investigate the performance of **FastNFA** on a wider class of benchmarks, as well as consider how analogous ideas can be used for the problem of *sampling* words accepted by an NFA.

Acknowledgments. This research is supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 1 project RS04/25, and by the Nanyang Technological University Start-up Grant.

References

1. ASPIRE 2A | NSCC (May 2024), <https://www.nscc.sg/aspire-2a/>
2. Àlvarez, C., Jenner, B.: A very hard log-space counting class. *Theor. Comput. Sci.* **107**(1), 3–30 (1993)
3. Amarilli, A., van Bremen, T., Gaspard, O., Meel, K.S.: Approximating queries on probabilistic graphs (2025), <https://arxiv.org/abs/2309.13287>, accepted to *Logical Methods in Computer Science*
4. Arenas, M., Croquevielle, L.A., Jayaram, R., Riveros, C.: $\#NFA$ admits an FPRAS: efficient enumeration, counting, and uniform generation for logspace classes. *J. ACM* **68**(6), 48:1–48:40 (2021)
5. GNU Project: GNU Multiple Precision Arithmetic Library (GMP). Free Software Foundation, <https://gmplib.org/>, 6.3.0 (2023-07-30) edn. (2025), accessed August 12, 2025
6. Jacob, B., Guennebaud, G.: Eigen: A C++ linear algebra library (2021), <https://eigen.tuxfamily.org>, released August 18, 2021; MPL 2.0 license
7. Meel, K.S., Chakraborty, S., Mathur, U.: A faster FPRAS for $\#NFA$. *Proc. ACM Manag. Data* **2**(2), 112 (2024)
8. Meel, K.S., de Colnet, A.: Towards practical FPRAS for $\#NFA$: Exploiting the power of dependence. *Proc. ACM Manag. Data* **3**(2) (Jun 2025). <https://doi.org/10.1145/3725253>, <https://dl.acm.org/doi/10.1145/3725253>
9. Meel, K.S., Shrotri, A.A., Vardi, M.Y.: Not all FPRASs are equal: demystifying FPRASs for DNF-counting. *Constraints* **24**(3–4), 211–233 (Oct 2019). <https://doi.org/10.1007/s10601-018-9301-x>
10. OpenMP Architecture Review Board: OpenMP application program interface, version 6.0. <https://www.openmp.org/specifications> (Nov 2024), accessed via OpenMP website

Appendix

A Definition of the Random Process

It was established in Section 4.1 that setting $n_t = \text{chase}\left(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|}\right)$ preserves the correctness of `countNFA`. This optimized choice of n_t arises from the observation that, in the proof of correctness for `countNFA`, it is crucial to ensure the following inequality holds:⁴

$$\Pr \left[\underset{1 \leq j \leq n_t}{\text{median}} M^j(q) \notin |\mathcal{L}(q)| (1 \pm \varepsilon) \right] \leq \frac{1}{16|\mathcal{Q}^u|}. \quad (4)$$

If we were to follow the same reasoning used to refine n_u , the value $n_t = \text{chase}\left(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|}\right)$ should be justified in two steps:

1. Show that $\Pr [M_q^j \notin (1 \pm \varepsilon) |\mathcal{L}(q)|] \leq \frac{1}{4}$;

⁴ In fact, the proof in [8] is more intricate, as will be discussed later. The bound $\frac{1}{16|\mathcal{Q}^u|}$ only applies to a simplified version of `countNFA` that omits line 9 in Algorithm 2.

2. Then, by definition, $n_t = \text{chase}\left(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|}\right)$ ensures inequality (4).

The difficulty with applying this reasoning directly is that, unlike the family $\{\text{est}_j\}_{1 \leq j \leq n_u}$, the collection $\{M^j(q)\}_{1 \leq j \leq n_t}$ is not mutually independent. This is because all n_t estimates depend on the sampling sets of the predecessors of q . This interdependence considerably complicates the analysis. To address the issue, [8] introduces a random process that simulates a variant of `countNFAcore` in which the size of the sets $S_r(q)$ is unbounded (i.e., omitting line 9 of Algorithm 2). They call this variant `countNFAcore*`. Using a coupling argument, they show how $M^j(q)$ can be replaced by a new random variable with more well-behaved properties, conditioned on sufficient knowledge of the algorithm's execution up to state q . This knowledge is formally represented by what they call the *history* of q . More precisely, the history h for a set of states $Q \subseteq \mathcal{Q}^u$ is a mapping $h : Q \rightarrow \mathbb{Q}$, and h is *realizable* when there exists a run of `countNFAcore*` that gives the value $h(q)$ to $p(q)$ for every $q \in Q$.

The random process comprises $n_s n_t$ independent copies identified by the superscript r . For $q \in \mathcal{Q}^u$, $t \in \mathbb{Q}$ and h a realizable history for q , we have several random variables $\mathfrak{S}_{h,t}^r(q)$ with domain all possible subsets of $\mathcal{L}(q)$. $\mathfrak{S}_{h,t}^r(q)$ simulates $S^r(q)$ in the situation where the value $p(q')$ for each ancestor q' of q has been set to $h(q')$ and where $p(q)$ is set to t (so t is restricted to values that can be given to $p(q)$ by the algorithm under h). The variables $\mathfrak{S}_{h,t}^r(q)$ are defined inductively. We refer the reader to the original paper for a more detailed discussion of the random process, while we limit ourselves to provide an intuitive explanation of the random variables defined within the process that are relevant to our discussion.

- As mentioned, $\mathfrak{S}_{h,t}^r(q)$ simulates the sampling set $S^r(q)$ when the `countNFAcore*` run satisfies $p(q') = h(q')$ for every $q' \in \text{ancestors}(q)$ and $t = p(q)$.
- We call $\hat{\mathfrak{S}}_h^r(q)$ the random variable that simulates $\hat{S}^r(q)$ when the `countNFAcore*` run satisfies $p(q') = h(q')$ for every $q' \in \text{ancestors}(q)$.

It is important to note that the family of random variables $\{\hat{\mathfrak{S}}_h^r(q)\}_{1 \leq r \leq n_s n_t}$ is mutually independent by construction, contrary to the original family of random sampling sets $\hat{S}^r(q)$. We refer the reader to [8] for the formal definition of $\hat{\mathfrak{S}}_h^r(q)$.

- Let $\rho_h(q) = \min_{q' \in \text{ancestors}(q)} h(q')$ and R_j the range of natural numbers $[n_s(j-1) + 1, n_s j]$. Define $\mathfrak{M}_h^j(q) = \left(\sum_{r \in R_j} |\hat{\mathfrak{S}}_h^r(q)| \right) / (\rho_h(q) n_s)$. This is the random process equivalent to $M^j(q)$ in line 7 of Algorithm 3. It is the j -th mean of our median-of-means estimator.

Each $\mathfrak{M}_h^j(q)$ is the normalized sum of a family of independent random variables $\{|\hat{\mathfrak{S}}_h^r(q)|\}_{r \in R_j}$. Moreover, the families corresponding to different indices j are independent of one another. Therefore, the family $\{\mathfrak{M}_h^j(q)\}_{1 \leq j \leq n_t}$ inherits this independence.

Going back to n_t , the definition of $n_t = \text{chase}\left(\frac{1}{4}, \frac{1}{16|\mathcal{Q}^u|}\right)$ exploits the independence of the family $\{\mathfrak{M}_h^j(q)\}_{1 \leq j \leq n_t}$. For the formal proof of correctness of this new value of n_t , see Theorem 1 in Appendix C.

B High-level Overview of the Proof of Correctness of `countNFA`

A thorough but high-level overview of the proof of correctness of `countNFA` in [8] is given in this section, as it will be useful in later portions of our discussion.

Here, we use $\kappa := \frac{\varepsilon}{1+\varepsilon}$. An important property is that for any positive $a, b \in \mathbb{R}$, $a \in b(1 \pm \kappa) \implies a \in \frac{b}{1 \pm \varepsilon}$.

1. Fact: The algorithm `countNFA` is correct if and only if

$$\Pr \left[\underset{1 \leq j \leq n_u}{\text{median}} \text{est}_j \in (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})| \right] \leq 1 - \delta$$

where est_j is the output of the j -th independent run of `countNFAcore`.

2. Observation: Let est the output of a single run of `countNFAcore`. A sufficient condition to guarantee that

$$\text{est} = p(q_F)^{-1} \in (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|.$$

holds is that the following 2 events occur simultaneously

- Event E_1 : for every $q \in \mathcal{Q}^u$, the estimate $p(q)$ satisfies

$$p(q) \in \frac{1 \pm \kappa}{|\mathcal{L}(q)|}$$

- Event E_2 : The sum of the sizes $|S^r(q)|$ are bounded

$$\sum_{q \in \mathcal{Q}^u} |S^r(q)| \leq \theta$$

If we take the complement of these events, we can set up the following inequality

$$\Pr [\text{est} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|] \leq \Pr [E_1^c \text{ or } E_2^c] \leq \Pr [E_1^c] + \Pr [E_2^c].$$

Where the superscript c denotes complement.

3. The proof proceeds to bound the probability of E_1^c . In particular, it will be established that

$$\Pr [E_1^c] = \Pr \left[\exists q \in \mathcal{Q}^u : p(q) \notin \frac{1 \pm \kappa}{|\mathcal{L}(q)|} \right] \leq \frac{1}{16}.$$

This is proved as follows:

- Fix a particular q . Via a coupling argument, it is shown that

$$\begin{aligned} \Pr \left[p(q) \notin \frac{1 \pm \kappa}{|\mathcal{L}(q)|} \right] &\leq \Pr \left[\underset{1 \leq j \leq n_t}{\text{median}} M^j(q) \notin \frac{1 \pm \kappa}{|\mathcal{L}(q)|} \right] \\ &\leq \Pr \left[\underset{1 \leq j \leq n_t}{\text{median}} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \end{aligned}$$

It will be shown in Steps 3.b–3.g that

$$\Pr \left[\text{median}_{1 \leq j \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \leq \frac{1}{16|\mathcal{Q}^u|}$$

Afterwards, using a union bound, we conclude that

$$\begin{aligned} \Pr \left[\exists q \in \mathcal{Q}^u : p(q) \notin \frac{1 \pm \kappa}{|\mathcal{L}(q)|} \right] &\leq \sum_{q \in \mathcal{Q}^u} \Pr \left[p(q) \notin \frac{1 \pm \kappa}{|\mathcal{L}(q)|} \right] \\ &\leq \sum_{q \in \mathcal{Q}^u} \Pr \left[\text{median}_{1 \leq j \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \\ &\leq \sum_{q \in \mathcal{Q}^u} \frac{1}{16|\mathcal{Q}^u|} = \frac{1}{16}. \end{aligned}$$

Which is what we wanted.

- (b) Bound $\text{Var}(|\hat{\mathfrak{S}}_h^r(q)|)$ explicitly using properties of the unrolled automaton.
- (c) Using $\text{Var}(\sum_{i=1}^{n_s} X_i) = \sum_{i=1}^{n_s} \text{Var}(X_i)$ for $\{X_i\}_{1 \leq i \leq n_t}$ mutually independent, derive an upper bound on $\text{Var}(\mathfrak{M}_h^j(q))$ as a function of n_s .
- (d) Apply a concentration inequality (i.e., Chebyshev's) to obtain

$$\Pr \left[\mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \leq \frac{1}{n_s} \cdot \left(\frac{\kappa^2(1-\kappa)}{(n+1)(1+\kappa^2)} \right)$$

- (e) Substituting $n_s = \lceil 4 \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \rceil$ in the previous inequality we get

$$\Pr \left[\mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \leq \frac{1}{4}.$$

- (f) Use the Chernoff bound to obtain

$$\Pr \left(\text{median}_{1 \leq j \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right) \leq e^{-n_t/8}.$$

- (g) Setting $n_t = \lceil 8 \ln(16n|\mathcal{Q}^u|) \rceil$ in the previous inequality we get

$$\Pr \left(\text{median}_{1 \leq j \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right) \leq \frac{1}{16|\mathcal{Q}^u|}.$$

- 4. Now, we will show $\Pr [E_2^c] \leq \frac{1}{8}$:

$$\Pr \left[\sum_{q \in \mathcal{Q}^u} |S^r(q)| > \theta \right] \leq \frac{1}{8}.$$

(a) A simple application of union bound tells us

$$\Pr \left[\sum_{q \in \mathcal{Q}^u} |S^r(q)| > \theta \right] \leq \underbrace{\Pr \left[\sum_{q \in \mathcal{Q}^u} |S^r(q)| > \theta \text{ and } \exists q : \text{median } \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right]}_{\Pr[E_3]} + \underbrace{\Pr \left[\exists q : \text{median } \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right]}_{\Pr[E_1^c]}$$

Where E_3 is defined as the event in the first summand

(b) It is shown in the step 2 that $\Pr[E_1^c] \leq \frac{1}{16}$
(c) Use Markov's inequality and the random process to show that

$$\Pr[E_3] \leq \frac{1}{\theta} \cdot (1 + \kappa) n_s n_t |\mathcal{Q}^u|$$

(d) Setting $\theta = \lceil 16 \cdot (1 + \kappa) n_s n_t |\mathcal{Q}^u| \rceil$ in the inequality above we obtain

$$\Pr[E_3] \leq \frac{1}{16}$$

(e) $\Pr \left[\sum_{q \in \mathcal{Q}^u} |S^r(q)| \right] \leq \Pr[E_3] + \Pr[E_1^c] \leq \frac{1}{16} + \frac{1}{16} = \frac{1}{8}$

5. Combining Items 2 and 3 gives

$$\Pr[\text{est} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|] \leq \Pr[E_1^c] + \Pr[E_2^c] \leq \frac{1}{16} + \frac{1}{8} < \frac{1}{4}.$$

6. `countNFAcore` computes n_u independent estimates $\text{est}_1, \dots, \text{est}_{n_t}$ and reports their median as final estimate. By Chernoff's inequality,

$$\Pr \left[\text{median } \text{est}_j \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})| \right] \leq e^{-n_u/8}$$

7. Finally, choose n_u so that the overall failure probability of `countNFA` is less than δ . Plugging $n_u = \lceil -8 \ln \delta \rceil$ in the inequality above, we obtain

$$\Pr \left[\text{median } \text{est}_j \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})| \right] \leq \delta$$

Throughout the explanation, we can observe how each parameter n_s , n_t , n_u , and θ is assigned its original value.

- n_s (the number of samples per mean) is fixed so that the probability of the mean misestimating $|\mathcal{L}(q)|$ is less than $\frac{1}{4}$. This interpretation follows directly from Steps 3.d–3.e.
- n_t (the number of means from which the median is taken) is defined so that the probability of the median of means misestimating $|\mathcal{L}(q)|$ is less than $\frac{1}{16Q^u}$. This interpretation follows directly from Steps 3.f–3.g.

- θ (the upper bound on the number of words contained in all sampling sets across all states) is fixed such that $\Pr[E_3] \leq \frac{1}{16}$. This interpretation follows directly from Steps 4.c–4.d.
- n_u (the number of repetitions of `countNFAcore`) is chosen so that the probability of the final output misestimating $|\mathcal{L}(\mathcal{A})|$ is less than δ . This interpretation follows directly from Steps 6–7.

C Theorems derived from overview

In the following lemmas and theorem, we will refer to Step 1 - 7, to specify portions of the high-level proof found in Appendix B.

Lemma 1. *Let x be an arbitrary real number greater than 1. If $n_s = \lceil x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \rceil$, then*

$$\Pr\left[\mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa}\right] \leq \frac{1}{x}$$

Proof. From Step 3.d, we have

$$\Pr\left[\mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa}\right] \leq \frac{1}{n_s} \cdot \frac{\kappa^2(1-\kappa)}{(n+1)(1+\kappa^2)}$$

Since $n_s \geq x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)}$, it immediately follows that

$$\Pr\left[\mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa}\right] \leq \frac{1}{x}$$

□

Lemma 2. *Let x be an arbitrary real number greater than 1. Let $n_s = \lceil x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \rceil$. If $n_t = \text{chase}\left(\frac{1}{x}, \frac{1}{z|\mathcal{Q}^u|}\right)$ is finite, then*

$$\Pr[E_1^c] = \Pr\left[\exists q \in \mathcal{Q}^u : p(q) \notin \frac{1 \pm \kappa}{|\mathcal{L}(q)|}\right] \leq \frac{1}{z}$$

Proof. From Lemma 1, $\Pr\left[\mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa}\right] \leq \frac{1}{x}$. Thus, we have that

$$\Pr\left[\text{median}_{1 \leq i \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa}\right] \leq \Pr\left[\text{Binomial}\left(n_t, \frac{1}{x}\right) > \frac{n_t}{2}\right]$$

We have that $n_t = \text{chase}\left(\frac{1}{x}, \frac{1}{z|\mathcal{Q}^u|}\right)$. Now, by the definition of chase and the fact that $\{\mathfrak{M}_h^j(q)\}_{1 \leq j \leq n_t}$ is a family of independent random variables,

$$\begin{aligned} \Pr \left[\text{median}_{1 \leq i \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] &\leq \Pr \left[\text{Binomial} \left(n_t, \frac{1}{x} \right) > \frac{n_t}{2} \right] \\ &\leq \frac{1}{z|\mathcal{Q}^u|} \end{aligned}$$

Now, we can proceed as done in Step 3.a.

$$\begin{aligned} \Pr[E_1^c] &\leq \Pr \left[\exists q : \text{median}_{1 \leq j \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \leq \sum_{q \in \mathcal{Q}^u} \Pr \left[\text{median}_{1 \leq j \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \\ &\leq \sum_{q \in \mathcal{Q}^u} \frac{1}{z|\mathcal{Q}^u|} = \frac{1}{z}. \end{aligned}$$

□

Lemma 3. *Let y be an arbitrary positive real number greater than 1. Set $\theta = \lceil y \cdot (1 + \kappa) n_s n_t |\mathcal{Q}^u| \rceil$. Then,*

$$\Pr[E_3] = \Pr \left[\sum_{q \in \mathcal{Q}^u} |S^r(q)| > \theta \text{ and } \exists q : \text{median}_{1 \leq j \leq n_t} \mathfrak{M}_h^j(q) \notin \frac{|\mathcal{L}(q)|}{1 \pm \kappa} \right] \leq \frac{1}{y}$$

Proof. From Step 4.c,

$$\Pr[E_3] \leq \frac{1}{\theta} \cdot (1 + \kappa) n_s n_t |\mathcal{Q}^u|$$

The inequality is immediate by plugging the proposed value. □

Lemma 4. *Let x, y arbitrary positive real numbers greater than 1. Let z be another positive real number. Let $n_s = \lceil x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \rceil$. Let $n_t = \text{chase} \left(\frac{1}{x}, \frac{1}{z|\mathcal{Q}^u|} \right)$. Let $\theta = \lceil y \cdot (1 + \kappa) n_s n_t |\mathcal{Q}^u| \rceil$. Then,*

$$\Pr[\text{est} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|] \leq \frac{1}{y} + \frac{2}{z}.$$

Provided n_t is finite.

Proof. From Step 2, we have that $\Pr[\text{est} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|] \leq \Pr[E_1^c] + \Pr[E_2^c]$. By Step 4.a, $\Pr[E_1^c] + \Pr[E_2^c] \leq \Pr[E_1^c] + \Pr[E_1^c] + \Pr[E_3]$. Using Lemma 2 and Lemma 3

$$\Pr[\text{est} \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})|] \leq \frac{1}{z} + \frac{1}{z} + \frac{1}{y}$$

□

Theorem 1. Let x, y , and z be positive real numbers, with $x, y > 1$ and let:

$$\begin{aligned} n_t &= \text{chase}\left(\frac{1}{x}, \frac{1}{z|\mathcal{Q}^u|}\right) & n_u &= \text{chase}\left(\frac{1}{y} + \frac{2}{z}, \delta\right) \\ n_s &= \left\lceil x \cdot \frac{(n+1)(1+\kappa^2)}{\kappa^2(1-\kappa)} \right\rceil & \theta &= \lceil y \cdot (1+\kappa)n_s n_t |\mathcal{Q}^u| \rceil \end{aligned}$$

Then:

$$\Pr \left[\text{median } \text{est}_j \notin (1 \pm \varepsilon) |\mathcal{L}(\mathcal{A})| \right] \leq \delta$$

provided that n_t and n_u are finite.

Proof. From Lemma 4 we have

$$\Pr[\text{est} \notin (1 \pm \varepsilon) \mathcal{L}(\mathcal{A})] = \frac{1}{y} + \frac{2}{z}$$

Which implies

$$\Pr \left[\text{Binomial}\left(n_u, \frac{1}{y} + \frac{2}{z}\right) > \frac{n_u}{2} \right]$$

And n_u is exactly defined with chase so that we can guarantee

$$\Pr \left[\text{Binomial}\left(n_u, \frac{1}{y} + \frac{2}{z}\right) > \frac{n_u}{2} \right] \leq \delta$$

□

D Properties of Chase

We remind ourselves the definition of chase.

Definition 1. For every $0 \leq p, \alpha \leq 1$, we define:

$$\text{chase}(p, \alpha) = \underset{n \in \mathbb{N}}{\text{argmin}} \left\{ \Pr \left[\text{Binomial}(n, p) > \frac{n}{2} \right] \leq \alpha \right\}$$

If there is no such n that satisfies the requirement, we define $\text{chase}(p, \alpha) = \infty$.

The following lemmas are routine.

Lemma 5. $\text{chase}(\cdot, \alpha)$ is non-decreasing in the range $(0, 1)$. $\text{chase}(p, \cdot)$ is non-increasing in the range $(0, 1)$.

Lemma 6. $\text{chase}(p, \alpha)$ is finite if $p < 1/2$

Lemma 7. $\text{chase}(p, \alpha) = 1$ if $p \geq \alpha$.

Lemma 8. $\text{chase}(p, \alpha) = 2$ if $p^2 \leq \alpha \leq p$.

Lemma 9. $\text{chase}(p, \alpha) = \infty$ if and only if $p \geq \frac{1}{2}$ and $\alpha < p^2$.

To compute chase, we first check the finiteness condition in Lemma 9. If chase is finite, we do a linear scan starting from $n = 1$, until we obtain

$$\Pr \left[\text{Binomial}(n, p) > \frac{n}{2} \right] \leq \alpha$$

Properties of the binomial distribution and Lemmas 6 to 9 can be used to design a more efficient search. Such optimizations were not required because the linear scan performs sufficiently fast.

E Optimizing x, y, z

In Section 4.2, we described a strategy to obtain the optimal values for x, y, z that maximize execution speed, constrained on the number of CPU cores. Algorithm 6 summarizes the entire procedure.

During the optimization of x , we need to find the minimum of the objective function $n_s(x)n_t(x)$. Since this objective function behaves as a black box, we employ a linear search to identify the optimal x over the range $[1, b]$, where b is chosen such that we can establish $\mathfrak{x} \leq b$ even without knowing \mathfrak{x} a priori. We begin at $x = 1$ because $\text{chase}(p, \alpha)$ is only defined for probabilistic inputs, and we terminate at $x = b$ since the optimal solution cannot exceed this upper bound. Our next step is to determine an appropriate value for b .

Notice that $n_s(x)n_t(x) \geq n_s(x)$ for $x > 1$ since $n_t(x) \in \mathbb{N} \cup \{\infty\}$. Let x_0 be an arbitrary anchor point where $n_s(x_0)n_t(x_0)$ is finite (By Lemma 6, any $x_0 > 2$ suffices; we choose $x_0 = 4$ arbitrarily). Therefore, if we find b such that $n_s(b) \geq n_s(x_0)n_t(x_0)$, then

$$n_s(x_0)n_t(x_0) \leq n_s(b) \leq n_s(x) \leq n_s(x)n_t(x) \quad \forall x > b$$

$n_s(b) \leq n_s(x)$ because $n_s(\cdot)$ is a linear function with a positive slope. Hence, no $x > b$ can minimize the objective, ensuring that the optimum \mathfrak{x} lies within $[1, b]$. To compute b , we solve $n_s(b) = n_s(4)n_t(4)$:

$$b = \frac{\kappa^2(1 - \kappa)}{(n + 1)(1 + \kappa^2)} n_s(4)n_t(4).$$

This b satisfies $n_s(b) \geq n_s(x_0)n_t(x_0)$ for $x_0 = 4$, which is what we wanted. So b provides practical upper bound on the linear search of $[1, b]$. The step size of the linear search 10^{-3} works well in practice and is used in our experimentation.

F Theorems related to Deterministic Line Optimization

Theorem 2. Let a deterministic line from q_1 to q_l contain d double-edge transitions. The language size and sampling probability at q_l can be computed deterministically from their values at q_1 :

$$|\mathcal{L}(q_l)| = 2^d \cdot |\mathcal{L}(q_1)| \quad p(q_l) = \frac{p(q_1)}{2^d}$$

Consequently, the full iterative estimation process for intermediate states of the line can be bypassed.

Proof. Let $p(q_1)$ be the probability that a word $w \in \mathcal{L}(q_1)$ is included in a sample set $S(q_1)$. Any such word w is a prefix for exactly 2^d distinct words in $\mathcal{L}(q_1)$. Let $p(q_l) = p(q_1)/2^d$, it is necessary to apply `reduce` to each of these 2^d suffixes with probability $p(q_l)/p(q_1) = 1/2^d$. The number of words to retain for each prefix $w \in S(q_1)$ is therefore a random variable following the binomial distribution⁵ $\text{Binom}(2^d, 1/2^d)$. Since enumerating all 2^d continuations is infeasible for large d , we can directly sample from this distribution to determine how many words to generate. This allows us to create the final sample sets for q_l efficiently, as detailed in Algorithm 10 in Appendix G.

Theorem 3. *Given a word w , let its l -bit suffix be w_{suffix} . The suffix is consistent with a line's structure (represented by L_S and L_F) if and only if:*

$$(w_{\text{suffix}} \oplus L_S) \wedge L_F = 0$$

where \oplus is the bitwise XOR operation and \wedge is the bitwise AND operation.

Proof. The term $(w_{\text{suffix}} \oplus L_S)$ identifies all positions where the word's suffix differs from the line's structure. The bitwise AND with L_F masks out these differences at all double-edge positions. The result is zero if and only if there are no mismatches at any fixed-transition positions. This allows for membership verification in $\mathcal{O}(1)$ time.

G Algorithm listing

Algorithm 6: `computeHyperparams`($|\mathcal{Q}^u|, \delta, \varepsilon$)

```

1  $C \leftarrow$  number of processor cores from system
2  $\kappa = \frac{\varepsilon}{1+\varepsilon}$ 
3  $\mathfrak{w} \leftarrow \text{wSolver}(\delta, \frac{\delta}{2^{10}}, C)$ 
4  $\mathfrak{y} \leftarrow 10^6$ 
5  $\mathfrak{z} \leftarrow \frac{2}{\mathfrak{w} - \frac{1}{\mathfrak{y}}}$ 
6  $b \leftarrow \frac{\kappa^2(1-\kappa)}{(n+1)(1+\kappa^2)} n_s(4)n_t(4)$ .
7 for  $x \in [1, b]$ , with step size of  $10^{-3}$ . do
8    $n_t = \text{chase}(1/x, 1/(\mathfrak{z}|\mathcal{Q}^u|))$ 
9    $n_s = \left\lceil \frac{(x)(1+\kappa^2)(n+\kappa)}{\kappa^2(1-\kappa)} \right\rceil$ 
10  keep  $(n_s, n_t)$  if  $\gamma = n_s n_t$  is minimal
11  $\theta \leftarrow \mathfrak{y}(1 + \kappa)n_s n_t |\mathcal{Q}^u|$ 
12  $n_u = \text{chase}(1/\mathfrak{y} + 2/\mathfrak{z}, \delta)$ 
13 return  $(n_s, n_t, n_u, \theta)$ 

```

⁵ In practice, the binomial distribution $\text{Binom}(2^d, 1/2^d)$ is well-approximated by a Poisson distribution with parameter $\lambda = 1$ when 2^d is sufficiently large, since $\text{Binom}(n, p) \xrightarrow{d} \text{Poisson}(np)$ (i.e. the distributions converge) as $n \rightarrow \infty$ and $p \rightarrow 0$.

Algorithm 7: wSolver(δ, η, C)

Binary search algorithm to find w^* given tolerance δ , search sensitivity η , and number of processor cores C

```

1 left  $\leftarrow \delta$ 
2 right  $\leftarrow 1.0$ 
3 while  $right - left > \eta$  do
4   mid  $\leftarrow (left + right)/2$ 
5   Update left and right according to the value of chase(mid,  $\delta$ )
6   if chase(mid,  $\delta$ )  $\leq C$  then
7     w  $\leftarrow$  mid
8     left  $\leftarrow$  mid
9   else
10    right  $\leftarrow$  mid
11 return w

```

Algorithm 8: BruteNFA($\mathcal{A}^u = (\mathcal{Q}^u, q_I^0, q_F^n, \mathcal{T}^u)$)

```

// Initialize empty dictionary "words"
1 for  $q \in \mathcal{Q}^u$  do
2   words( $q$ )  $\leftarrow \emptyset$ 
3 words( $q_I^0$ )  $\leftarrow \{\lambda\}$ 
4 for  $i \leftarrow 0$  to  $n - 1$  do
5   for  $q^i \in \mathcal{Q}^i$  do
6     for  $b \in \{0, 1\}$  do
7       for each  $q^{i+1} \in \mathcal{Q}^{i+1}$  with  $q^i \in b\text{-pred}(q^{i+1})$  do
8         for  $w \in \text{words}(q^i)$  do
9           add  $w \cdot b$  to words( $q^{i+1}$ )
10 return |words( $q_F^n$ )|

```

Algorithm 9: estimateAndSample(q) (with deterministic line)

```

1 if  $q$  is the last state of some deterministic line then
2    $q_1 \leftarrow$  first state of line
3    $d \leftarrow$  |double edges in line|
4    $S^r(q) \leftarrow \text{deterministicSampler}(S(q_1), \text{line})$ 
5    $p(q) \leftarrow \frac{p(q_1)}{2^d}$ 
6 if  $q$  belongs to some deterministic line then
7   return ; // Skip ordinary computation
8 else
9   Continue as before...

```

Algorithm 10: deterministicSampler($(S^r(q_1))_{r \in [\gamma]}, \text{line}$)

Input: Sample sets $(S^r(q_1))_{r \in [\gamma]}$ for the line's start state; A deterministic line object line with d double-edge transitions

Output: The final sample sets $(S(q_l))_{r \in [\gamma]}$ for the line's end state.

```

1  $S'(q_l) \leftarrow$  empty sets
2 for  $r \leftarrow 1$  to  $\gamma$  do
3   foreach  $w_{\text{prefix}} \in S^r(q_1)$  do
4      $k \leftarrow$  sample from  $\text{Binom}(2^d, \frac{1}{2^d})$ 
5     for  $i \leftarrow 1$  to  $k$  do
6        $w' \leftarrow w_{\text{prefix}}$ 
7       foreach transition  $t$  in line do
8         if  $t$  is a double edge then
9            $b \leftarrow$  randomly choose from  $\{0, 1\}$ 
10        else
11           $b \leftarrow t$ 
12         $w' \leftarrow w' \cdot b$ 
13     add  $w'$  to  $S'^r(q_l)$ 
14 return  $S'(q_l)$ 

```

Algorithm 11: containsWord(line, w)

Input: A deterministic line object "line" (containing its start state language $\mathcal{L}(q_1)$, length l , structure mask L_S , and fixed-position mask L_F), and a word w .

Output: **true** if w is in the language of the line's final state, **false** otherwise.

```

// 1. Decompose the word
1  $w_{\text{prefix}} \leftarrow \text{shift\_right}(w, l)$ ; // Get first  $|w| - l$  bits
2  $w_{\text{suffix}} \leftarrow w \wedge (\text{shift\_left}(1, l) - 1)$ ; // Get last  $l$  bits
// 2. Check the prefix
3 if  $w_{\text{prefix}} \notin \mathcal{L}(q_1)$  then
4   return false
// 3. Check the suffix
5 if  $((w_{\text{suffix}} \oplus L_S) \wedge L_F) \neq 0$  then
6   return false
7 return true

```

Algorithm 12: $\text{estimateAndSample}(q)$ (optimized)
with $\text{pred}(q) = (q_1, \dots, q_k)$

```

1  $\rho(q) = \min(p(q_1), \dots, p(q_k))$ 
2 for  $1 \leq j \leq n_t$  do
3   for  $1 \leq i \leq n_s$  do
4      $r \leftarrow j \cdot n_s + i$ 
5      $S^r(q) = \text{union}(q, S^r(q_1), \dots, S^r(q_k))$ 
6      $\hat{M}^j(q) \leftarrow \hat{M}^j(q) + |S^r(q)|$ 
7      $M^j(q) \leftarrow \frac{\hat{M}^j(q)}{n_s \cdot \rho(q)}$ 
8    $\hat{p}(q) = \text{median}(M^1(q), \dots, M^{n_t}(q))^{-1}$ 
9    $p(q) = \min(\rho(q), \hat{p}(q))$ 
10   $N(q) = \frac{1}{p(q)}$ 

```

Algorithm 13: $\text{union}(q, S_1, \dots, S_k)$ (optimized)
where q has k predecessors $q_1 \prec \dots \prec q_k$ and $S_i \subseteq \mathcal{L}(q_i) \forall 1 \leq i \leq k$

```

1  $S' = \emptyset$ 
2 for  $b \in \{0, 1\}$  do
3   let  $J$  be the subset of  $\{1, \dots, k\}$  such that  $(q_j \mid j \in J) = b\text{-pred}(q)$ 
4   for  $j \in J$  and  $w \in S_j$  do
5     if  $w \notin \mathcal{L}(q_\ell)$  for every  $\ell < j$  with  $\ell \in J$ 
6     then add  $w \cdot b$  to  $S'$  with probability  $\frac{\rho(q)}{\rho(q_j)}$ 
7 return  $S'$ 

```

Algorithm 14: $\text{union}(q, S_1, \dots, S_k)$ with $q \in \mathcal{Q}^i$ (with caching)

```

1  $S' = \emptyset$ 
2 for  $b \in \{0, 1\}$  do
3   let  $J$  be the subset of  $\{1, \dots, k\}$  such that  $(q_j \mid j \in J) = b\text{-pred}(q)$ 
4   for  $j \in J$  and  $w \in S_j$  do
5     if  $\text{cache}_i(w \cdot b, q) \in [2^{k-j}, 2^{k-j+1})$  then add  $w \cdot b$  to  $S'$  with
       probability  $\frac{\rho(q)}{\rho(q_j)}$ 
6 return  $S'$ 

```
