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Abstract. The #NFA problem asks for the number of words of a fixed
length n accepted by a non-deterministic finite automaton. We present
FastNFA, a practical tool for solving the #NFA problem at scale in practice.
FastNFA computes randomized approximations for the #NFA problem,
and comes with rigorous (ϵ, δ)-guarantees on the accuracy of the estimates
produced. Our experimental results show that FastNFA scales well beyond
naïve implementations of existing theoretical algorithms, solving a full
order of magnitude more benchmarks within a fixed timeout.
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1 Introduction

In this paper, we introduce FastNFA, a novel tool for solving the following problem
in practice:

#NFA: given a non-deterministic finite automaton (NFA)A = (Q, qI , qF , T )
with m states, and a number n ∈ Z, determine |Ln(A)|, that is, the num-
ber of words of length n in the language accepted by A.

The #NFA problem is a fundamental problem in computer science, since an NFA
is arguably the canonical succinct representation of a regular language. From a
theoretical perspective, the #NFA problem is known to be #P-complete; more
specifically, it lies in the SpanL-complete complexity class [2]. In particular, this
implies that many other natural problems can be reduced to #NFA, for example,
counting satisfying assignments of a Boolean formula in disjunctive normal form
(DNF), counting answers to regular path queries (RPQs) on graph databases,
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evaluating RPQs on probabilistic graphs [3], and counting satisfying assignments
of non-deterministic ordered binary decision diagrams (nOBDDs) [4], among
others.

Recent years have seen significant progress on randomized approximation
algorithms for the #NFA problem. In a breakthrough result, Arenas et al. [4]
showed the existence of a fully polynomial-time randomized approximation scheme
(FPRAS) for the #NFA problem; i.e., a polynomial-time randomized approxima-
tion algorithm returning the true count within a (1± ε)-multiplicative threshold
with high probability. However, the time complexity of their original algorithm
(O(m17n17ε−14), up to poly-logarithmic factors), is untenably high for practical
implementation. A growing line of work has focused on bringing down this com-
plexity to the current best bound of O(m3n2 log(mn)ϵ−2) [7, 8]; but until now
no algorithm has been amenable to implementation in code due to impractically
large constants.

In this paper, we describe the design and implementation3 of FastNFA, the first
algorithm capable of solving #NFA (and more generally, any problem in SpanL) at
a large scale in practice. We do this by observing and addressing several shortfalls
in the current best-known theoretical FPRAS for the #NFA problem, known as
countNFA [8]. First, we observe that the internal parameters used in countNFA
can be tightened for improved performance while retaining theoretical guaran-
tees (Section 4.1). Secondly, we identify and exploit a parallelism-performance
tradeoff (Section 4.2), where the expected runtime of individual runs of a key
subroutine of the algorithm can be reduced at the price of requiring more (paral-
lel) runs, and vice versa. Lastly, motivated by the observation that many NFAs
contain only limited nondeterminism in practice, we introduce an optimization
(Section 4.3) that avoids unnecessary computation for states that occur only as
part of “deterministic lines”, i.e., runs of the NFA without nondeterminism.

The effectiveness of the above improvements incorporated into FastNFA is
supported by comprehensive experimental results presented in Section 5. In
particular, we run an ablation study that sheds light on the impact of each
individual optimization. Our results confirm a significant impact; in particular,
FastNFA solves over 10× as many benchmarks within a 300 second timeout as a
naïve implementation of the original countNFA algorithm (Figure 2).

2 Notation and Preliminaries

We write [n] to denote the set {1, 2, . . . , n}. For a, b and ε three non-negative
real numbers, we use a ∈ (1 ± ε)b to denote (1 − ε)b ≤ a ≤ (1 + ε)b; similarly,
a ∈ b(1±ε)−1 stands for b

1+ε ≤ a ≤ b
1−ε (with b

0 defined as∞ when b ̸= 0, and as
0 when b = 0). A word w over an alphabet Σ is a sequence (w1 . . . wk) of length
|w| = k with each wi ∈ Σ. λ is denoted as the empty word (of length 0). We
further denote by Σ∗ the set of all words (language) over Σ. For w,w′ ∈ Σ∗, we
denote by w·w′ their concatenation. For S ⊆ Σ∗, we write S ·w = {w′ ·w | w′ ∈ S}.

3 We will release the code upon final acceptance and publication of this paper.
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FPRAS For a problem that, given an input x of size s, to count a number
N(x) ∈ R+, a fully polynomial-time randomized approximation scheme (FPRAS)
is an algorithm that, given x, ε > 0, and 0 < δ < 1, runs in time polynomial
in s, 1/ε and log(1/δ), and returns an estimate Ñ with the guarantee that
Pr

[
Ñ ∈ (1± ε)N(x)

]
≥ 1− δ.

NFA A non-deterministic finite automaton (NFA) is a tuple A = (Q, qI , qF , T )
where Q is a finite set of states, qI ∈ Q is the initial state, T ⊆ Q × Σ × Q
is a transition relation, and qF ∈ Q is the final state. This research mainly
examines the case when Σ = {0, 1}, though our algorithm is expandable to larger
alphabet size. We assume a total order ≺ on the states. A run of w on A is a
sequence ρ = (q0, . . . , q|w|) such that q0 = qI , q|w| = qF and, for every i < |w|,
(qi, wi+1, qi+1) ∈ T . A word w is accepted by q ∈ Q, when there is a run of
w on A that ends on q. The language of a state q, denoted L(q), is the set of
words accepted by q, and the language of A is L(A) = L(qF ). For n ∈ N, we
define Ln(A) as the set of words of length n in L(A). For q ∈ Q and b ∈ Σ, the
b-predecessors of q are given by a sequence pred(q, b) = (q′ | (q′, b, q) ∈ T ) ordered
consistently with ≺. We also define pred(q) = (q′ | (q′, 0, q) ∈ T or (q′, 1, q) ∈ T ),
again with states ordered according to ≺.

Unrolling Given an NFA A = (Q, qI , qF , T ) and n ∈ N, one may construct the un-
rolled NFA Au

n whose language is Ln(A) in time O(n|T |). One can check whether
Ln(A) is empty in time O(n|T |); we hence assume Ln(A) ̸= ∅. Since n will be
fixed, we will just write Au = (Qu, q0I , q

n
F , T u). We now describe the construction

of Au. For each state q ∈ Q and 0 ≤ ℓ ≤ n, if q is reachable in A by some word of
length ℓ, then Qu contains a state qℓ, and T u ensures that qℓ is reachable by pre-
cisely all words of length ℓ that reach q in A. Formally, q0I is in Qu and, for every
0 ≤ ℓ < n, if (q1, b, q2) is in T and qℓ1 is in Qu, then qℓ+1

2 is in Qu and (qℓ1, b, q
ℓ+1
2 )

is in T u. We write Qℓ = {qℓ | q ∈ Q and q is reachable by words of length ℓ }
and Q<ℓ = Q0 ∪ · · · ∪ Qℓ−1 and similarly for Q≤ℓ, Q>ℓ and Q≥ℓ. Note that Q0

contains only q0I . Graphically, we see unrolled automata as directed acyclic graphs
(DAGs) where the states are vertices and the transitions are edges labeled by the
transition symbol b. We will again assume some total order ≺ on the states of
Au. Since in this paper we work only with unrolled NFA, we drop the superscript
from state names.

Derivation run Let w ∈ L(q). The derivation run run(w, q) is defined inductively
as follows:

• If q = qI then w = λ and the only derivation run is run(λ, qI) = qI .
• If q ̸= qI then let b be the last symbol of w, write w = w′ · b and let
q′ ∈ pred(q, b) be the first b-predecessor of q such that w′ ∈ L(q′). Then
run(w, q) = run(w′, q′)

b−→ q.

Last common prefix state Let R and R′ be two runs in Au both starting at qI .
The last common prefix state of R and R′, denoted by lcps(R,R′), is kth state of
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R for the largest possible k such that the kth prefix of R equals the kth prefix of
R′.

3 Algorithm

The following description is adapted from the original presentation of the count-
NFA algorithm in [8]. The overall goal is to compute a reliable approximation of
|Ln(A)|. The FPRAS algorithm begins by constructing the unrolled automaton
Au = (Qu, qI , qF , T u) for the given word length requirement n. It then processes
the states of Au in a bottom-up manner, ensuring that all predecessors of a state
q are processed before q itself.

For each state q ∈ Qu, the algorithm computes two key quantities: an
estimate p(q), which approximates |L(q)|−1, and a collection of sample sets
S1(q), . . . , Sγ(q), which are all subsets of L(q). At a high level, for every state
q with predecessors pred(q) = (q1, . . . , qk), the algorithm performs the following
steps:

1. It uses the sample sets (Sr(qi))i∈[k],r∈[γ] and the estimates (p(qi))i∈[k] from
the predecessors of q to compute the new estimate p(q).

2. It then constructs the new sample sets (Sr(q))r∈[γ] for state q using its estimate
p(q) and the predecessors’ sample sets.

The algorithm finishes after processing the final state qF , and returns the final
count estimate N(qF ) = 1/p(qF ).

3.1 countNFA

The countNFA procedure (Algorithm 1) serves as the main entry point. It first
computes the unrolled automaton Au and determines the necessary hyperpa-
rameters, such as the number of sampling sets γ = nsnt, based on the desired
tolerance ε and confidence δ. To amplify the success probability to at least 1− δ,
it executes nu independent runs of the core routine, countNFAcore (Algorithm 2),
and returns the median of their outputs as the final estimate of |Ln(A)|. We will
return to the calculation of the four parameters ns, nt, nu, and θ later in the
paper.

Algorithm 1: countNFA(A = (Q, qI , qF , T ), n, ε, δ)
1 Compute the unrolled NFA Au = (Qu, qI , qF , T u) of A for length n
2 (ns, nt, nu, θ)← computeHyperparams(|Qu|, δ, ε)
3 for j ← 1 to nu do
4 estj ← countNFAcore(Au, n, ns, nt, θ)

5 return median(est1, . . . , estnu)



FastNFA: A High-Performance FPRAS Implementation for #NFA 5

3.2 countNFAcore

The procedure countNFAcore (Algorithm 2) is the core of the FPRAS. For the
initial state qI , it sets p(qI) = 1 (line 1) and initializes all sample sets Sr(qI) to
contain only the empty word, {λ} (lines 3-4). The algorithm then proceeds layer by
layer through the unrolled automaton. For each layer Qi, it iterates through every
state q ∈ Qi and calls estimateAndSample to compute the probability estimate
p(q) and the corresponding sample sets. To efficiently perform membership checks,
a cache is maintained and updated for each layer via calls to computeCache(i) and
updateCache(i). To ensure a polynomial running time, the procedure terminates
and returns 0 if the total number of samples exceeds the threshold θ (line 10).

Algorithm 2: countNFAcore(Au, n, ns, nt, θ)

1 p(qI)← 1
2 computeCache(0)
3 for r ← 1 to nsnt do
4 Sr(qI)← {λ}
5 for i← 1 to n do
6 computeCache(i)
7 for q ∈ Qi do
8 estimateAndSample(q)
9 if

∑
r∈[nsnt],q′∈Qu |Sr(q′)| ≥ θ then

10 return 0

11 updateCache(i)

12 return N(qF )

3.3 estimateAndSample

Given a state q with predecessors pred(q) = (q1, . . . , qk), the estimateAndSample
procedure computes p(q) and the sample sets (Sr(q))r∈[γ]. At this stage, for each
predecessor qi, an estimate p(qi) is known such that for any word w ∈ L(qi), the
probability of w being in a sample set Sr(qi) is p(qi).

The procedure begins by computing ρ(q) = min(p(q1), . . . , p(qk)) (line 1). It
then uses the reduce procedure to normalize the predecessor sample sets (lines 2-
3), creating temporary sets (S̄r(q, qi))r∈[γ],i∈[k] where the sampling probability
for any word is uniformly ρ(q). Next, the union procedure is called to combine
these normalized samples into new sets (Ŝr(q))r∈[γ] (lines 4-5). For any word
w ∈ L(q), the probability of w being in Ŝr(q) is now ρ(q), making ρ(q)−1|Ŝr(q)|
an unbiased estimator for |L(q)|.

To obtain a robust estimate, the “median-of-means” technique is applied
(lines 6-8). The γ = nsnt estimates are partitioned into nt batches of size ns,
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the mean estimation is computed separately for each batch, then the median
of these means is taken. The inverse of this median is stored in ρ̂(q). Since
|L(q)| ≥ |L(qi)|, it is expected that the final probability p(q) is no larger than
any p(qi). The algorithm thus sets p(q) = min(ρ(q), ρ̂(q)) (line 9). Finally, the
procedure calls reduce one last time on the sets Ŝr(q) to produce the final
sample sets Sr(q) (lines 11-12), ensuring that for every w ∈ L(q), we have
Pr [w ∈ Sr(q) | w ∈ L(q)] = p(q).

Algorithm 3: estimateAndSample(q) with pred(q) = (q1, . . . , qk)

1 ρ(q)← min(p(q1), . . . , p(qk))
2 for r ← 1 to nsnt and i← 1 to k do
3 S̄r(q, qi)← reduce

(
Sr(qi),

ρ(q)
p(qi)

)
4 for r ← 1 to nsnt do
5 Ŝr(q)← union

(
q, S̄r(q, q1), . . . , S̄

r(q, qk)
)

6 for j ← 1 to nt do
7 M j(q)← 1

nsρ(q)

∑ns
r=1 |Ŝ

ns(j−1)+r(q)|

8 ρ̂(q)← median(M1(q), . . . ,Mnt(q))−1

9 p(q)← min(ρ(q), ρ̂(q))
10 N(q)← 1

p(q)

11 for r ← 1 to nsnt do
12 Sr(q)← reduce

(
Ŝr(q), p(q)

ρ(q)

)

3.4 union

The purpose of union (Algorithm 4) is to construct a sample set S′ for a state
q from the sample sets S1, . . . , Sk from pred(q) with respect to their order q1 ≺
q2 ≺ · · · ≺ qk. A key challenge is that a word may be reachable in q via multiple
predecessors, leading to duplicates. To ensure each word is generated through a
unique path, the algorithm only includes words corresponding to their derivation
run. Specifically, for a transition on symbol b ∈ Σ from predecessors qi and qj
(with qi ≺ qj) to q, a word w · b is added to S′ from a sample w ∈ Si only if
qi is the first predecessor in the order ≺ such that w ∈ L(qi). This check for
uniqueness is made efficient by using a precomputed cache, as detailed in [8].

3.5 reduce

The reduce method (Algorithm 5) adjusts the sampling density of a set. Given
an input set S and a target probability p ∈ [0, 1], it constructs a new set S′

by retaining each element s ∈ S with probability p, independently of all other
elements.
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Algorithm 4: union(q, S1, . . . , Sk) (informal)
where q has k predecessors ordered as q1 ≺ · · · ≺ qk and Si ⊆ L(qi) for all
1 ≤ i ≤ k

1 S′ ← ∅
2 for b ∈ {0, 1} do
3 Let J be the subset of {1, . . . , k} such that (qj | j ∈ J) = b-pred(q)
4 for j ∈ J and w ∈ Sj do
5 if w /∈ L(qℓ) for every ℓ < j with ℓ ∈ J then
6 add w · b to S′

7 return S′

Algorithm 5: reduce(S, p) with p ∈ [0, 1]

1 S′ ← ∅
2 for s ∈ S do
3 Add s to S′ with probability p

4 return S′

4 Technical Contributions

We now present FastNFA, a practical FPRAS for the #NFA algorithm imple-
mented in C++ based on the original countNFA algorithm outlined in Section 3.
FastNFA incorporates several theoretical and engineering enhancements, which
we document here.

4.1 Optimization of parameters nt and nu

At the start of the algorithm, countNFA computes four parameters—ns, nt, nu,
and θ—that largely determine its runtime. Parameters ns and nt correspond
to the median-of-means estimator in lines 6–8 of Algorithm 3: ns specifies the
number of sampling sets used to compute each mean, while nt is the number of
means whose median is taken. Their product, nsnt = γ, gives the total number of
sampling sets computed per automaton state. On the other hand, the parameter
nu denotes how many times the countNFAcore routine is repeated to reduce the
overall error probability. Finally, θ is a hard limit on the total number of words
stored across all sampling sets (line 10 of Algorithm 2).

For fixed inputs ε, δ and unrolled automaton Qu, and defining κ := ε/(1 + ε),
the original values of these parameters (as presented in [8]) are:

ns =

⌈
4(n+ 1)

(1 + κ)2

κ2(1− κ)

⌉
nt =

⌈
8 ln

(
16|Qu|

)⌉
nu =

⌈
8 ln

(
1
δ

)⌉
θ = ⌈16(1 + κ)nsnt|Qu|⌉
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Table 1: Descriptive statistics of the ratio (i.e., estimate divided by exact value)
between the value of |Ln(A)| estimated by countNFA with (ε, δ) = (0.8, 0.36)
using the original ns, nt, nu parameters [8] and the exact count obtained by
BruteNFA on 298 randomly-generated graphs. Note that all empirical results fall
well within the theoretical guarantee.

n µ σ min 25% 50% 75% max
Theoretical
Guarantee

298 0.9994 0.0059 0.9375 0.9980 1.0000 1.0020 1.0087 [0.2, 1.8]

We found that these parameters are prohibitively large for practical use. For
example, setting ε = 0.8 and δ = 0.36 (values used in practice, for instance, in
[9]), we have that nsnt ≈ 608(n + 1) ln(16|Qu|) and nu = 9. That means we
have to compute about 608(n+ 1) ln(16|Qu|) sampling sets for each state in the
unrolled automaton (Algorithm 3), and repeat the entire procedure nu = 9 times
(Algorithm 1). This leads to impractically long runtimes in most cases.

Empirical Study of Tightness We first sought to better understand empirically
the impact of ns, nt, and nu parameters on the output approximation quality. To
do this, we developed an implementation of the FPRAS algorithm documented
above in Section 3, as well as a brute force solution (documented in Algorithm 8 in
Appendix G) for reference. Our experiments (Table 1) on 298 randomly-generated
NFAs showed that estimates produced by countNFA always fell within a 10%
tolerance (i.e., N(qF ) ∈ (1± ε)|L(qF )| is always satisfied with ε = 0.1). Since the
accuracy observed in practice is much tighter than the theoretical guarantee of
an 80% tolerance implied by the parameter ε = 0.8, this suggests that some of
the bounds of the original analysis can be improved. Additionally, we noticed
that the threshold θ is never reached in practice. We investigate this direction
further below.

Optimizing nu Recall that countNFA uses the median as a variance reduction
technique in two key portions of the algorithm: first, in the median-of-means
for estimating |L(q)| for every q ∈ Qu (line 8 of Algorithm 3); and second, in
line 5 of Algorithm 1, when we take the median of nu independent estimates
{estj}1≤j≤nu

, given by independent runs of countNFAcore.
Using the median is a natural idea. Take for example the median of inde-

pendent countNFAcore runs just discussed. It is shown in [8] that for a single
countNFAcore output est, we have Pr [est /∈ (1± ε)|L(A)|] ≤ 1/4. Nevertheless, we
desire our final estimate (i.e., the output of countNFA) to fall within (1±ε)|L(A)|
with small failure probability δ. To reduce the probability of error from 1/4 to δ,
we compute nu independent estimates by running countNFAcore several times,
and report the median. We know that if the median was outside of the target
range (1± ε)|L(A)|, then strictly more than nu/2 of our independent estimates
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were outside of the range. Formally:

Pr

[
median
1≤j≤nu

estj /∈ (1± ε)|L(A)|
]
≤ Pr

 nu∑
j=1

1 [estj /∈ (1± ε)|L(A)|] > nu

2


Observing that 1 [estj /∈ (1± ε)|L(A)|] ∼ Bernoulli(1/4), we have the sum of
indicator functions is a binomial random variable, resulting in:

Pr

[
median
1≤j≤nu

estj /∈ (1± ε)|L(A)|
]
≤ Pr

[
Binomial

(
nu,

1

4

)
>

nu

2

]
The upper tail of the binomial distribution can be computed directly for arbitrary
nu, or bounded above using Chernoff’s inequality as is done in [8]. In any case, if
we guarantee that nu is large so that Pr [Binomial(nu, 1/4) > nu/2] ≤ δ, then the
probability of our median-based estimator falling outside the desired (1±ε)|L(A)|
range will also be at most δ.

In [8], the Chernoff inequality is applied to derive the bound

Pr

[
Binomial

(
nu,

1

4

)
>

nu

2

]
≤ e−nu/8,

which implies that setting nu = ⌈8 ln(1/δ)⌉ suffices to achieve the desired confi-
dence level δ. However, computing the binomial tail exactly allows us to obtain a
smaller value for the parameter nu, defined as

nu = argmin
n∈N

{
Pr

[
Binomial

(
n,

1

4

)
>

n

2

]
≤ δ

}
.

Since the original Chernoff-based value ⌈8 ln(1/δ)⌉ already ensures the same
confidence level, our refined value of nu must, by construction, be less than or
equal to the original one. This reasoning will serve as a template for similar
refinements introduced later in our analysis, motivating the following notation.

Definition 1. For every 0 ≤ p, α ≤ 1, we define:

chase(p, α) = argmin
n∈N

{
Pr

[
Binomial(n, p) >

n

2

]
≤ α

}
If there is no such n that satisfies the requirement, we define chase(p, α) =∞.

So we have our refined parameter nu = chase(1/4, δ). The terminology comes
from the idea that we are given an error probability p and we are chasing a
smaller error probability α. Lemma 6 in Appendix D guarantees that chase( 14 , δ)
is finite for every value of δ.
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Optimizing nt In line 8 of Algorithm 3, we take the median of nt estimates M j(q)
to reduce the chance of large errors in approximating |L(q)|. Following the same
reasoning used to derive a reduced value for nu, we can similarly obtain a smaller
value for nt, defined as follows:

nt = chase

(
1

4
,

1

16|Qu|

)
The correctness of this refinement is more delicate. Roughly, the proof of

correctness of countNFA in [8] requires us to guarantee:

Pr

[
median
1≤j≤nt

M j(q) /∈ |L(q)|(1± ε)

]
≤ 1

16|Qu|
(1)

Moreover, since we are able to show that:

Pr
[
M j(q) /∈ |L(q)|(1± ε)

]
≤ 1

4

then we have that nt = chase( 14 ,
1

16|Qu| ) is the smallest number of repetitions
needed to the ensure inequality (1), which is also ensured by the original, Chernoff-
based parameter value ⌈8 ln(16|Qu|)⌉. This description is not precise because the
family of random estimates {M j(q)}1≤j≤nt

is not mutually independent, so a
more careful analysis is needed for validating the use of chase (see Appendix A).

From constants to variables Summarizing the analysis on ns and nt performed
above, the refined parameter values are as follows:

nu = chase

(
1

4
, δ

)
nt = chase

(
1

4
,

1

16|Qu|

)
(2)

While the other two parameters remain unchanged, namely

ns =

⌈
4 · (n+ 1)(1 + κ2)

κ2(1− κ)

⌉
θ = ⌈16 · (1 + κ)nsnt|Qu|⌉ (3)

The multiplicative constants 4 and 16 in ns and θ, respectively, originate from
arbitrary choices made in the proof of [8] to guarantee the algorithm’s correctness.
However, these choices do not account for their effect on the running time.
Similarly, the value of nt = chase

(
1
4 ,

1
16|Qu|

)
arises from the somewhat arbitrary

decision to chase precisely 1
16|Qu| . Theorem 1 shows that many of these constants

can be allowed to vary freely, leading to the following theorem whose proof is
given in Appendix C.

Theorem 1. Let x, y, and z be positive real numbers, with x, y > 1 and let:

nt = chase

(
1

x
,

1

z|Qu|

)
nu = chase

(
1

y
+

2

z
, δ

)
ns =

⌈
x · (n+ 1)(1 + κ2)

κ2(1− κ)

⌉
θ = ⌈y · (1 + κ)nsnt|Qu⌉
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Then:

Pr

[
median
1≤j≤nu

estj /∈ (1± ε) |L(A)|
]
≤ δ

provided that nt and nu are finite.

Thus, for every trio of valid values of x, y, z, we can obtain different values for
parameters ns, nt, nu and θ that still preserve the guarantees of correctness. The
benefit of introducing these new variables is that we can now design a procedure
to compute the optimal values of x, y, and z that maximize the algorithm’s
execution speed. This procedure will be detailed in Section 4.2.

Observe that x = 4, y = 16, z = 16 recovers the parameters in (2) and (3).
Since these parameters now have smaller values or remain unchanged with respect
to the ones reported in [8], the asymptotic complexity of our algorithm remains
the same.

4.2 Exploiting Parallelism

Recall that nu represents the number of times the countNFAcore procedure must
be repeated to achieve δ-guarantees on the probability of success. Since these nu

executions are independent, they can be parallelized across multiple cores (see
Section 4.4). However, for larger values of δ, the optimal number of repetitions
nu = chase (1/y + 2/z, δ) is typically small, often just one or two. For instance,
for the confidence level δ = 0.36 and the original x = 4, y = 16, and z = 16,
we have nu = 1. Consequently, the available parallelism of modern multi-core
processors remains largely underutilized in the current setting.

As mentioned in Section 4.1, the overall wall-clock runtime of the algorithm is
largely governed by ns and nt. Each automaton state requires γ = nsnt sampling
sets, and the most computationally expensive steps involve manipulating these
sets (e.g., reduce and union operations).

In the baseline configuration, the parameters are set to x = 4, y = 16, and
z = 16. Our objective is to adjust these values to minimize nsnt while maintaining
the constraint nu ≤ C, where C denotes the number of processor cores available.
Let x, y, z be the optimal parameters for x, y and z respectively. We thus have
the following optimization problem:

(x, y, z) = argmin
x, y, z

γ

subject to nu ≤ C

If we define w := 1
y + 2

z and substitute ns and nt with the expressions featured
in Theorem 1, we have:

(x, y, z) = argmin
x, y, z

⌈
x · (n+ 1)(1 + κ2)

κ2(1− κ)

⌉
· chase

(
1

x
,

1

z|Qu|

)
.

subject to chase(w, δ) ≤ C and w =
1

y
+

2

z
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An approximate solution to this optimization problem can be obtained by finding
optimal values for w, y, z, and x, in that order. To minimize γ, we can proceed
step by step:

Step 1 Determine the largest value of w such that chase(w, δ) ≤ C, and denote it
by w. Since the function chase(·, δ) is monotonically increasing (Lemma 5
in Appendix D), we can find this maximal w efficiently using a binary
search. Because w is a continuous variable, the binary search stops when
the difference between the upper and lower bounds becomes smaller than a
predefined tolerance η. In practice, we found that setting η = δ/210 provides
a good balance between accuracy and computation time. Algorithm 7 in
Appendix G describes the procedure for finding w. After determining w, our
optimization constraint becomes 1

y + 2
z ≤ w. From this, it follows directly

that z < 2
w .

Step 2 Set y to a sufficiently large constant. In our experiments, we used y = 106 = y.
The variable y appears only in the expression θ = ⌈y(1 + κ)nsnt|Qu|⌉, which
represents the maximum number of words stored across all sampling sets
and all states. The algorithm terminates if this threshold is reached (line 10
of Algorithm 2). In practice, as reported in Section 4.1, this threshold was
never reached for the original setting y = 16. Therefore, increasing y does
not affect the algorithm’s wall-clock runtime or its asymptotic complexity.

Step 3 Set z = 2
w− 1

y

. This value represents the smallest z allowed by the optimization
constraint found in Step 1. We choose the smallest possible z because the
function nt = chase

(
1
x ,

1
z|Qu|

)
is monotonically increasing in z.

Note that z is very close to the theoretical lower bound 2
w , since we made y

very large.

Step 4 With y = y and z = z fixed, the problem reduces to:

ns(x) =

⌈
x · (n+ 1)(1 + κ2)

κ2(1− κ)

⌉
nt(x) = chase

(
1

x
,

1

z|Qu|

)
x = argmin

x
ns(x)nt(x)

Treat the objective as a black box and perform a linear search over x ∈ [1, b],
where b is chosen such that we can establish x ≤ b even without knowing x
a priori. Start at x = 1 because chase(p, α) is defined only for probabilistic
inputs (here p = 1/x), and stop at x = b since the optimum cannot exceed
this bound. It can be shown that for b = κ2(1−κ)

(n+1)(1+κ2) ns(4)nt(4) we can
guarantee x ≤ b, so set b = b as the search upper bound (see Appendix E for
a proof of this fact). A linear search step size of 10−3 works well in practice
and is used in our experiments.
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4.3 Deterministic Line Optimization

Many NFAs, when unrolled, exhibit long sequences of states in which no nonde-
terminism is present. For example, consider encoding an NFA with a non-binary
alphabet Σ into one with the binary alphabet {0, 1}: each transition over a
character a ∈ Σ can be encoded with a chain of O(log(|Σ|)) states using only
transitions labeled with binary characters. Processing these chains one state at a
time is inefficient, as the estimation and sampling steps are redundant due to
the lack of nondeterminism. To exploit this common structure, we introduce an
optimization for what we term deterministic lines.

1 2 3 4 5 6
0

0

1

1
0

1

0

Fig. 1: Example of a deterministic line (highlighted in blue) within a DAG of
length l = 5 with d = 2 double-edge transitions. It is represented with the two
masks: LS = 0010 and LF = 1010.

Definition 2 (Deterministic line). A deterministic line is a maximal path of
states (q1, q2, . . . , ql) in an unrolled NFA such that:

– Every state qi in the path, for i ∈ [1, . . . , l], has exactly one successor.
– Every state qj in the path, for j ∈ [2, . . . , l], has exactly one predecessor.

Deterministic line representation We can represent the structure of a
deterministic line of length l containing d double-edge transitions, where each
double-edge corresponds to a pair of transitions labeled “0” and “1” between the
same two consecutive states, using two bitmasks:

– Structure Mask (LS): An l-bit vector where the i-th bit corresponds to the
i-th transition: it is set on 0 for a transition on 0, and to 1 for a transition on
1. For double-edge transitions, this bit can be set to 0 as it will be ignored.

– Fixed-Position Mask (LF ): An l-bit vector where the i-th bit corresponds
to the i-th transition: it is set on 0 if the transition is a double-edge transition,
and to 1 otherwise.

Accelerating Computation along Deterministic Lines Instead of applying
the standard estimateAndSample procedure to every state in a deterministic
line, we can compute the final estimate and sample sets for ql directly from the
information at q1 (the exact implementation is documented in Algorithm 9 in
Appendix G). This provides a significant computational shortcut.
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Theorem 2. Let a deterministic line from q1 to ql contain d double-edge transi-
tions. The language size and sampling probability at ql can be computed deter-
ministically from their values at q1:

|L(ql)| = 2d · |L(q1)| p(ql) =
p(q1)

2d

Consequently, the full iterative estimation process for intermediate states of the
line can be bypassed.

Efficient Membership Checking with Bitwise Operations The determin-
istic line optimization provides significant performance and memory benefits by
avoiding computation and storage for intermediate states. However, this creates a
challenge for the union procedure, which relies on checking if a word w from one
predecessor’s sample set S(qi) also belongs to the language of another predecessor,
L(qj), where qj might be the end of a deterministic line. Since we have discarded
the intermediate cache information for states within the line, a direct lookup is
impossible. To solve this, we introduce a highly efficient membership check that
leverages bitwise operations.

Theorem 3. Given a word w, let its l-bit suffix be wsuffix. The suffix is consistent
with a line’s structure (represented by LS and LF ) if and only if:

(wsuffix ⊕ LS) ∧ LF = 0

where ⊕ is the bitwise XOR operation and ∧ is the bitwise AND operation.

The complete membership check is described in Algorithm 11 in Appendix G,
which is used to reconstruct cache information on-the-fly when processing a state
that follows a deterministic line.

Lexicographical Ordering for Correct Caching The deterministic line
optimization introduces an asymmetry in caching. Because we discard cache infor-
mation for intermediate states within a line, we can perform certain membership
checks but not others:

– Possible Check: Given a word w from a standard sample set S(qi), we can
check if w ∈ L(qj), where qj ends a deterministic line. This is done efficiently
using the bitwise containsWord method.

– Impossible Check: Given a word w′ from a deterministic line’s sample
set S(qj), we cannot easily check if w′ ∈ L(qi) for some other state qi. The
necessary derivation information for w′ was never stored in the cache matrix.

The union procedure resolves non-determinism by iterating through a state’s
predecessors in a fixed order. To prevent the “impossible check” from ever being
needed, we must ensure the “possible check” is always the one performed. We
achieve this by establishing a new global state ordering, ≺′, that gives lexico-
graphical priority to states that are part of a deterministic line. This new ordering
is enforced by sorting the states within each layer and putting the states at the
end of each deterministic line first.
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4.4 Other Engineering Enhancements

Handling Large and High-precision Floating-point Numbers The size
of a language |L(q)| can easily exceed the representational limits of standard
integer types in C++. Consequently, the algorithm requires support for arbitrary-
precision integers. To address this requirement, we employ the data types provided
by the GNU Multiple Precision Arithmetic Library (GMP) [5], which enable
accurate and reliable numerical computations throughout the algorithm.

Merging the Two reduce Calls In the estimateAndSample procedure, the
reduce method is invoked twice for a given state q with predecessor qi: at the
beginning of the iteration processing q,

reduce
(
Sr(qi),

ρ(q)
p(qi)

)
and at the end of the previous iteration while processing qi,

reduce
(
Ŝr(qi),

p(qi)
ρ(qi)

)
.

Since these calls are independent, we combined them into a single invocation:

reduce
(
Sr(qi),

ρ(q)
ρ(qi)

)
, ρ(q)

p(qi)
· p(qi)ρ(qi)

= ρ(q)
ρ(qi)

.

This optimization produces a modest performance improvement by reducing the
number of reduce calls without altering the algorithm’s correctness.

Memory Management The algorithm requires the generation of sampling sets
for each state q to estimate the size of the language L(q). In its original form,
as presented in the reference work, the algorithm requires storing Sr(qi), Ŝr(q),
and S̄r(q, qi) for all r ∈ [1, . . . , γ], q ∈ Qu, and qi ∈ pred(q). In practice, such an
approach is impractical, as it quickly leads to memory exhaustion.

An initial optimization consisted of storing sampling sets only for the current
and immediately preceding layers. A similar strategy was applied to other data
structures, such as cachei, where only the current layer is retained in memory.

Subsequently, we observed that three separate data structures were still being
used to store samples, even though Ŝr(q) and S̄r(q, qi) functioned solely as
temporary storage during the calculation of Sr(qi). To address this, we slightly
adapt the logic of estimateAndSample and union (see Algorithm 12 and 13 in
Appendix G) so that the samples are reduced and merged on-the-fly, thus
eliminating the need for these additional storage structures. The reduce logic
is implemented directly inside union and no longer requires a separate method.
This modification enables the removal of Ŝr(q) and S̄r(q, qi), improving memory
efficiency and using data locality for faster access.

Profiling revealed that memory allocation and access were among the main
performance bottlenecks. Consequently, we applied several best practices to
further optimize memory management, including pre-allocation and the use of
references rather than value copying, resulting in a substantial improvement in
execution time.
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Caching We use the dense matrix data type from the Eigen library [6] to store
caches (see Algorithm 2) as it allows for efficient matrix multiplication and
memory allocation. In addition, to access cachei(w, q) as required in the practical
implementation of union (see Algorithm 14 in Appendix G, line 5), we maintain
a hash table to map the words w into the matrix’s row index number.

Parallelization Recall that the countNFA procedure, described in Algorithm 1,
requires nu runs of countNFAcore, where nu is calculated according to Section 4.1.
Because each execution of countNFAcore is independent, we enable its parallel
execution using the OpenMP API [10]. This parallelization allows an execution
time reduction by an approximate factor of nu, at the cost of increased memory
consumption, as each independent run requires its own set of data structures.

5 Empirical Evaluation

To assess the practical performance of our proposed approach, we conducted an
extensive empirical study. This work presents the first known implementation of
the underlying theoretical framework, for which no standard benchmarks were
previously available. Our evaluation is therefore designed to answer three primary
research questions:

RQ 1 What is the impact in performance of each of our optimizations in Section 4,
and how do they compare to a brute force approach?

RQ 2 How does the presence of deterministic structures in the input graphs impact
the performance of the algorithm?

RQ 3 How accurate are the estimates computed by the final version of our algorithm
in practice (i.e., are they better than the theoretical guarantees imply)?

Table 2: Descriptive statistics of the ratio (i.e., estimate divided by exact value)
between the value of |Ln(A)| estimated by FastNFA with (ε, δ) = (0.8, 0.36) and
the exact count obtained by BruteNFA, on 305 randomly-generated graphs. Note
that all empirical results fall well within the theoretical guarantee.

n µ σ min 25% 50% 75% max
Theoretical
Guarantee

305 1.0013 0.0105 0.9674 0.9986 1.0007 1.0045 1.0870 [0.2, 1.8]
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Hardware and Benchmarks All experiments were performed on the NSCC Singa-
pore ASPIRE2A cluster [1]. Each run was allocated 2 CPU cores, 32 GB of RAM,
and a timeout of 300 seconds (5 minutes). Our benchmark suite comprises a large
set of randomly generated 0/1-labeled directed acyclic graphs (DAGs), consisting
of 12 random graphs for each layer count from 20 to 200 layers, totaling 2,172
samples. The benchmarks are categorized into four structural classes based on
the ratio of total states to the number of layers: _1x (|states| = |layers|), _2x
(|states| = 2× |layers|), _3x, and _5x.

Compared Algorithms We use an ablation study, evaluating five distinct ap-
proaches:

– BruteNFA: A baseline implementation (Algorithm 8) developed to provide
exact counts via exhaustive enumeration. Its exponential complexity makes
it a viable reference only for smaller instances.

– countNFA: A direct translation of the original theoretical algorithm described
in Section 3 into code. As we will show, this version proved impractical for
most cases.

– FastNFAorig-params,no-det-opt An implementation of countNFA that further lever-
ages the engineering optimizations described in Section 4.4.

– FastNFAno-det-opt: A more efficient version of FastNFAorig-params,no-det-opt, which
incorporates not only the engineering enhancements but also the optimizations
of the parameters ns, nt, and nu described in Section 4.1.

– FastNFA: Our final proposed algorithm, which builds on FastNFAno-det-opt to
integrate the deterministic line optimization described in Section 4.3.

Parameters In line with previous work on FPRAS evaluation [9], we set the
tolerance to ε = 0.8 and the confidence to δ = 0.36 in our experiments.

RQ1: Performance Impact of Optimizations Figure 2 provides a compre-
hensive answer to our first research question by aggregating the performance of
all implementations across the entire benchmark suite. The plot clearly illustrates
the impact of both our theoretical and engineering contributions. The BruteNFA
method, while exact, is quickly overwhelmed by its exponential complexity. Our
first implementation of the original countNFA algorithm proved even less practical:
it not only performed worse than BruteNFA but failed on the vast majority of
the benchmark suite due to timeouts or memory exhaustion.

Our first attempt of a practical solution, FastNFAorig-params,no-det-opt, focused
on the engineering enhancements described in Section 4.4. While this version
offered a drastic improvement over countNFA, empirical evaluation revealed a
crucial bottleneck. Its poor scaling was a direct consequence of the large number
of sampling sets, determined by the hyperparameter γ = ns · nt. Consequently,
FastNFAorig-params,no-det-opt still underperformed the BruteNFA baseline on most
instances. This finding underscored a key insight: engineering enhancements
alone were insufficient, and a truly practical implementation required theoretical
changes to the algorithm’s hyperparameters. The true breakthrough is evident in
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the performance of FastNFAno-det-opt: by combining our theoretical contributions
with engineering optimizations, this version exhibits the expected polynomial-time
behavior, solving a substantial portion of the benchmark suite. Finally, FastNFA,
the final version of our algorithm that also incorporates the deterministic line
optimization from Section 4.3, shows the best overall performance.
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Cactus Plot: Performance Comparison Across All Instances

Implementation Version
countNFA
BruteNFA
FastNFAorig-params, no-det-opt

FastNFAno-det-opt

FastNFA

Fig. 2: Cactus plot comparing the performance of the implementations across the
entire benchmark suite. The y-axis is on a logarithmic scale.

RQ2: Impact of Deterministic Structures The impact of deterministic
structures is best analyzed by comparing performance across different graph
categories, as shown in Figure 2. To quantify the structural differences, we
measured the average determinism ratio, as the total number of states occurring
as part of some deterministic lines, divided by the total number of states. The
determinism ratio for each class of benchmarks is as follows: _1x (98.71%), _2x
(70.87%), _3x (46.93%), and _5x (26.45%).

The _1x graphs, with a nearly pure deterministic structure, provide a clear
showcase for the optimization. As seen in Figure 3a, our final algorithm leverages
these lines to achieve a dramatic performance improvement. This powerful effect
is characteristic of any benchmark class featuring such structures.

Conversely, as the determinism ratio decreases across the _2x, _3x, and _5x
categories, the performance of our final version increasingly converges with that
of the standard countNFA, as shown in Figures 3b–3d. This is a crucial result, as
it demonstrates that our optimization incurs no measurable overhead on graphs
lacking deterministic lines, confirming its effectiveness as a purely opportunistic
and beneficial enhancement.
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(a) Runtime on graphs with suffix _1x.
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(b) Runtime on graphs with suffix _2x.
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(c) Runtime on graphs with suffix _3x.
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(d) Runtime on graphs with suffix _5x.

Fig. 3: Runtime performance comparison on different graph categories.

RQ3: Accuracy of the Final Algorithm The empirical accuracy of our final
algorithm is summarized in Table 2. For all instances where an exact count was
available from our brute-force solver, we validated the output of our FPRAS.
The results confirm that all estimates were well within the theoretical bounds as
constrained by ε = 0.8. Furthermore, the observed average and maximum relative
errors were significantly lower than this bound, underscoring the reliability of
our approach in practice.

6 Conclusion

We introduce FastNFA, a practical tool for approximating the number of words
accepted by an NFA. Experimental results validated the efficiency of the novel
optimizations used. In future work, we would like to further investigate the
performance of FastNFA on a wider class of benchmarks, as well as consider how
analogous ideas can be used for the problem of sampling words accepted by an
NFA.

Acknowledgments. This research is supported by the Ministry of Education, Singa-
pore, under its Academic Research Fund Tier 1 project RS04/25, and by the Nanyang
Technological University Start-up Grant.



20 A. Heissl et al.

References

1. ASPIRE 2A | NSCC (May 2024), https://www.nscc.sg/aspire-2a/
2. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theor. Comput. Sci.

107(1), 3–30 (1993)
3. Amarilli, A., van Bremen, T., Gaspard, O., Meel, K.S.: Approximating queries on

probabilistic graphs (2025), https://arxiv.org/abs/2309.13287, accepted to Logical
Methods in Computer Science

4. Arenas, M., Croquevielle, L.A., Jayaram, R., Riveros, C.: #NFA admits an FPRAS:
efficient enumeration, counting, and uniform generation for logspace classes. J.
ACM 68(6), 48:1–48:40 (2021)

5. GNU Project: GNU Multiple Precision Arithmetic Library (GMP). Free Software
Foundation, https://gmplib.org/, 6.3.0 (2023-07-30) edn. (2025), accessed August
12, 2025

6. Jacob, B., Guennebaud, G.: Eigen: A C++ linear algebra library (2021),
https://eigen.tuxfamily.org, released August 18, 2021; MPL 2.0 license

7. Meel, K.S., Chakraborty, S., Mathur, U.: A faster FPRAS for #NFA. Proc. ACM
Manag. Data 2(2), 112 (2024)

8. Meel, K.S., de Colnet, A.: Towards practical FPRAS for #NFA: Exploit-
ing the power of dependence. Proc. ACM Manag. Data 3(2) (Jun 2025).
https://doi.org/10.1145/3725253, https://dl.acm.org/doi/10.1145/3725253

9. Meel, K.S., Shrotri, A.A., Vardi, M.Y.: Not all FPRASs are equal: demys-
tifying FPRASs for DNF-counting. Constraints 24(3–4), 211–233 (Oct 2019).
https://doi.org/10.1007/s10601-018-9301-x

10. OpenMP Architecture Review Board: OpenMP application program interface, ver-
sion 6.0. https://www.openmp.org/specifications (Nov 2024), accessed via OpenMP
website

Appendix

A Definition of the Random Process

It was established in Section 4.1 that setting nt = chase
(

1
4 ,

1
16|Qu|

)
preserves the

correctness of countNFA. This optimized choice of nt arises from the observation
that, in the proof of correctness for countNFA, it is crucial to ensure the following
inequality holds:4

Pr

[
median
1≤j≤nt

M j(q) /∈ |L(q)|(1± ε)

]
≤ 1

16|Qu|
. (4)

If we were to follow the same reasoning used to refine nu, the value nt =

chase
(

1
4 ,

1
16|Qu|

)
should be justified in two steps:

1. Show that Pr
[
M j

q /∈ (1± ε)|L(q)|
]
≤ 1

4 ;

4 In fact, the proof in [8] is more intricate, as will be discussed later. The bound 1
16|Qu|

only applies to a simplified version of countNFA that omits line 9 in Algorithm 2.
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2. Then, by definition, nt = chase
(

1
4 ,

1
16|Qu|

)
ensures inequality (4).

The difficulty with applying this reasoning directly is that, unlike the family
{estj}1≤j≤nu

, the collection {M j(q)}1≤j≤nt
is not mutually independent. This

is because all nt estimates depend on the sampling sets of the predecessors of
q. This interdependence considerably complicates the analysis. To address the
issue, [8] introduces a random process that simulates a variant of countNFAcore in
which the size of the sets Sr(q) is unbounded (i.e., omitting line 9 of Algorithm 2).
They call this variant countNFAcore⋆. Using a coupling argument, they show
how M j(q) can be replaced by a new random variable with more well-behaved
properties, conditioned on sufficient knowledge of the algorithm’s execution up to
state q. This knowledge is formally represented by what they call the history of q.
More precisely, the history h for a set of states Q ⊆ Qu is a mapping h : Q→ Q,
and h is realizable when there exists a run of countNFAcore⋆ that gives the value
h(q) to p(q) for every q ∈ Q.

The random process comprises nsnt independent copies identified by the
superscript r. For q ∈ Qu, t ∈ Q and h a realizable history for q, we have
several random variables Sr

h,t(q) with domain all possible subsets of L(q). Sr
h,t(q)

simulates Sr(q) in the situation where the value p(q′) for each ancestor q′ of
q has been set to h(q′) and where p(q) is set to t (so t is restricted to values
that can be given to p(q) by the algorithm under h). The variables Sr

h,t(q) are
defined inductively. We refer the reader to the original paper for a more detailed
discussion of the random process, while we limit ourselves to provide a intuitive
explanation of the random variables defined within the process that are relevant
to our discussion.

– As mentioned, Sr
h,t(q) simulates the sampling set Sr(q) when the countNFAcore⋆

run satisfies p(q′) = h(q′) for every q′ ∈ ancestors(q) and t = p(q).
– We call Ŝr

h(q) the random variable that simulates Ŝr(q) when the countNFAcore⋆

run satisfies p(q′) = h(q′) for every q′ ∈ ancestors(q).
It is important to note that the family of random variables {Ŝr

h(q)}1≤r≤nsnt

is mutually independent by construction, contrary to the original family
of random sampling sets Ŝr(q). We refer the reader to [8] for the formal
definition of Ŝr

h(q).
– Let ρh(q) = minq′∈ancestors(q) h(q

′) and Rj the range of natural numbers

[ns(j − 1) + 1, nsj]. Define Mj
h(q) =

(∑
r∈Rj

|Ŝr
h(q)|

)
/ (ρh(q)ns). This is

the random process equivalent to M j(q) in line 7 of Algorithm 3. It is the
j-th mean of our median-of-means estimator.
Each Mj

h(q) is the normalized sum of a family of independent random variables
{|Ŝr

h(q)|}r∈Rj . Moreover, the families corresponding to different indices j are
independent of one another. Therefore, the family {Mj

h(q)}1≤j≤nt
inherits

this independence.

Going back to nt, the definition of nt = chase( 14 ,
1

16|Qu| ) exploits the indepen-
dence of the family {Mj

h(q)}1≤j≤nt
. For the formal proof of correctness of this

new value of nt, see Theorem 1 in Appendix C.
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B High-level Overview of the Proof of Correctness of countNFA

A thorough but high-level overview of the proof of correctness of countNFA in [8]
is given in this section, as it will be useful in later portions of our discussion.

Here, we use κ := ε
1+ε . An important property is that for any positive a, b ∈ R,

a ∈ b(1± κ) =⇒ a ∈ b
1±ϵ .

1. Fact: The algorithm countNFA is correct if and only if

Pr

[
median
1≤j≤nu

estj ∈ (1± ε)|L(A)|
]
≤ 1− δ

where estj is the output of the j−th independent run of countNFAcore.
2. Observation: Let est the output of a single run of countNFAcore. A sufficient

condition to guarantee that

est = p(qF )
−1 ∈ (1± ε)|L(A)|.

holds is that the following 2 events occur simultaneously
– Event E1: for every q ∈ Qu, the estimate p(q) satisfies

p(q) ∈ 1± κ

|L(q)|

– Event E2: The sum of the sizes |Sr(q)| are bounded∑
q∈Qu

|Sr(q)| ≤ θ

If we take the complement of these events, we can set up the following
inequality

Pr [est /∈ (1± ε)|L(A)|] ≤ Pr [Ec
1 or Ec

2] ≤ Pr [Ec
1] + Pr [Ec

2] .

Where the superscript c denotes complement.
3. The proof proceeds to bound the probability of Ec

1. In particular, it will be
established that

Pr [Ec
1] = Pr

[
∃q ∈ Qu : p(q) /∈ 1±κ

|L(q)|

]
≤ 1

16 .

This is proved as follows:
(a) Fix a particular q. Via a coupling argument, it is shown that

Pr
[
p(q) /∈ 1±κ

|L(q)|

]
≤ Pr

[
median
1≤j≤nt

M j(q) /∈ 1±κ
|L(q)|

]
≤ Pr

[
median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
It will be shown in Steps 3.b–3.g that
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Pr

[
median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
≤ 1

16|Qu|

Afterwards, using a union bound, we conclude that

Pr
[
∃q ∈ Qu : p(q) /∈ 1±κ

|L(q)|

]
≤

∑
q∈Qu

Pr
[
p(q) /∈ 1±κ

|L(q)|

]
≤

∑
q∈Qu

Pr

[
median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
≤

∑
q∈Qu

1

16|Qu|
=

1

16
.

Which is what we wanted.
(b) Bound Var

(
|Ŝr

h(q)|
)

explicitly using properties of the unrolled automaton.
(c) Using Var

(∑ns

i=1 Xi

)
=

∑ns

i=1 Var(Xi) for {Xi}1≤i≤nt
mutually indepen-

dent, derive an upper bound on Var
(
Mj

h(q)
)

as a function of ns.
(d) Apply a concentration inequality (i.e., Chebyshev’s) to obtain

Pr

[
Mj

h(q) /∈ |L(q)|
1± κ

]
≤ 1

ns
·
( κ2(1− κ)

(n+ 1)(1 + κ2)

)
(e) Substituting ns = ⌈4 · (n+1)(1+κ2)

κ2(1−κ) ⌉ in the previous inequality we get

Pr

[
Mj

h(q) /∈ |L(q)|
1± κ

]
≤ 1

4
.

(f) Use the Chernoff bound to obtain

Pr

(
median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

)
≤ e−nt/8.

(g) Setting nt = ⌈8 ln(16n|Qu|)⌉ in the previous inequality we get

Pr

(
median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

)
≤ 1

16|Qu|
.

4. Now, we will show Pr [Ec
2] ≤ 1

8 :

Pr

∑
q∈Qu

|Sr(q)| > θ

 ≤ 1
8 .
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(a) A simple application of union bound tells us

Pr

∑
q∈Qu

|Sr(q)| > θ

 ≤ Pr

∑
q∈Qu

|Sr(q)| > θ and ∃q : median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ


︸ ︷︷ ︸

Pr[E3]

+Pr

[
∃q : median

1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
︸ ︷︷ ︸

Pr[Ec
1]

Where E3 is defined as the event in the first summand
(b) It is shown in the step 2 that Pr [Ec

1] ≤ 1
16

(c) Use Markov’s inequality and the random process to show that

Pr [E3] ≤
1

θ
· (1 + κ)nsnt|Qu|

(d) Setting θ = ⌈16 · (1 + κ)nsnt|Qu|⌉ in the inequality above we obtain

Pr [E3] ≤
1

16

(e) Pr
[∑

q∈Qu |Sr(q)|
]
≤ Pr [E3] + Pr [Ec

1] ≤ 1
16 + 1

16 = 1
8

5. Combining Items 2 and 3 gives

Pr[est /∈ (1± ε)|L(A)|] ≤ Pr [Ec
1] + Pr [Ec

2] ≤
1

16
+

1

8
<

1

4
.

6. countNFAcore computes nu independent estimates est1, . . . , estnt
and reports

their median as final estimate. By Chernoff’s inequality,

Pr

[
median
1≤j≤nu

estj /∈ (1± ε)|L(A)|
]
≤ e−nu/8

7. Finally, choose nu so that the overall failure probability of countNFA is less
than δ. Plugging nu = ⌈−8 ln δ⌉ in the inequality above, we obtain

Pr

[
median
1≤j≤nu

estj /∈ (1± ε)|L(A)|
]
≤ δ

Throughout the explanation, we can observe how each parameter ns, nt, nu,
and θ is assigned its original value.

– ns (the number of samples per mean) is fixed so that the probability of the
mean misestimating |L(q)| is less than 1

4 . This interpretation follows directly
from Steps 3.d–3.e.

– nt (the number of means from which the median is taken) is defined so that
the probability of the median of means misestimating |L(q)| is less than 1

16Qu .
This interpretation follows directly from Steps 3.f–3.g.
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– θ (the upper bound on the number of words contained in all sampling sets
across all states) is fixed such that Pr [E3] ≤ 1

16 . This interpretation follows
directly from Steps 4.c–4.d.

– nu (the number of repetitions of countNFAcore) is chosen so that the probabil-
ity of the final output misestimating |L(A)| is less than δ. This interpretation
follows directly from Steps 6–7.

C Theorems derived from overview

In the following lemmas and theorem, we will refer to Step 1 - 7, to specify
portions of the high-level proof found in Appendix B.

Lemma 1. Let x be an arbitrary real number greater than 1. If ns = ⌈x ·
(n+1)(1+κ2)

κ2(1−κ) ⌉, then

Pr

[
Mj

h(q) /∈ |L(q)|
1± κ

]
≤ 1

x

.

Proof. From Step 3.d, we have

Pr

[
Mj

h(q) /∈ |L(q)|
1± κ

]
≤ 1

ns
· κ2(1− κ)

(n+ 1)(1 + κ2)

Since ns ≥ x · (n+1)(1+κ2)
κ2(1−κ) , it immediately follows that

Pr

[
Mj

h(q) /∈ |L(q)|
1± κ

]
≤ 1

x

⊓⊔

Lemma 2. Let x be an arbitrary real number greater than 1. Let ns = ⌈x ·
(n+1)(1+κ2)

κ2(1−κ) ⌉. If nt = chase
(

1
x ,

1
z|Qu|

)
is finite, then

Pr[Ec
1] = Pr

[
∃q ∈ Qu : p(q) /∈ 1±κ

|L(q)|

]
≤ 1

z

.

Proof. From Lemma 1, Pr
[
Mj

h(q) /∈ |L(q)|
1±κ

]
≤ 1

x . Thus, we have that

Pr

[
median
1≤i≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
≤ Pr

[
Binomial

(
nt,

1

x

)
>

nt

2

]
We have that nt = chase( 1x ,

1
z|Qu| ). Now, by the definition of chase and the

fact that {Mj
h(q)}1≤j≤nt

is a family of independent random variables,
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Pr

[
median
1≤i≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
≤ Pr

[
Binomial

(
nt,

1

x

)
>

nt

2

]
≤ 1

z|Qu|

Now, we can proceed as done in Step 3.a.

Pr[Ec
1] ≤ Pr

[
∃q : median

1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
≤

∑
q∈Qu

Pr

[
median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

]
≤

∑
q∈Qu

1

z|Qu|
=

1

z
.

⊓⊔

Lemma 3. Let y be an arbitrary positive real number greater than 1. Set θ =
⌈y · (1 + κ)nsnt|Qu|⌉. Then,

Pr[E3] = Pr

∑
q∈Qu

|Sr(q)| > θ and ∃q : median
1≤j≤nt

Mj
h(q) /∈ |L(q)|

1± κ

 ≤ 1

y

Proof. From Step 4.c,

Pr [E3] ≤
1

θ
· (1 + κ)nsnt|Qu|

The inequality is immediate by plugging the proposed value. ⊓⊔

Lemma 4. Let x, y arbitrary positive real numbers greater than 1. Let z be
another positive real number. Let ns = ⌈x· (n+1)(1+κ2)

κ2(1−κ) ⌉. Let nt = chase
(

1
x ,

1
z|Qu|

)
.

Let θ = ⌈y · (1 + κ)nsnt|Qu|⌉. Then,

Pr [est /∈ (1± ε)|L(A)|] ≤ 1

y
+

2

z
.

Provided nt is finite.

Proof. From Step 2, we have that Pr [est /∈ (1± ε)|L(A)|] ≤ Pr [Ec
1] + Pr [Ec

2].
By Step 4.a, Pr [Ec

1] + Pr [Ec
2] ≤ Pr [Ec

1] + Pr [Ec
1] + Pr [E3]. Using Lemma 2 and

Lemma 3

Pr [est /∈ (1± ε)|L(A)|] ≤ 1

z
+

1

z
+

1

y

⊓⊔
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Theorem 1. Let x, y, and z be positive real numbers, with x, y > 1 and let:

nt = chase

(
1

x
,

1

z|Qu|

)
nu = chase

(
1

y
+

2

z
, δ

)
ns =

⌈
x · (n+ 1)(1 + κ2)

κ2(1− κ)

⌉
θ = ⌈y · (1 + κ)nsnt|Qu⌉

Then:
Pr

[
median
1≤j≤nu

estj /∈ (1± ε) |L(A)|
]
≤ δ

provided that nt and nu are finite.

Proof. From Lemma 4 we have

Pr[est /∈ (1± ε)L(A)] = 1

y
+

2

z

Which implies

Pr

[
Binomial

(
nu,

1

y
+

2

z

)
>

nu

2

]
And nu is exactly defined with chase so that we can guarantee

Pr

[
Binomial

(
nu,

1

y
+

2

z

)
>

nu

2

]
≤ δ

⊓⊔

D Properties of Chase

We remind ourselves the definition of chase.

Definition 1. For every 0 ≤ p, α ≤ 1, we define:

chase(p, α) = argmin
n∈N

{
Pr

[
Binomial(n, p) >

n

2

]
≤ α

}
If there is no such n that satisfies the requirement, we define chase(p, α) =∞.

The following lemmas are routine.

Lemma 5. chase(·, α) is non-decreasing in the range (0, 1). chase(p, ·) is non-
increasing in the range (0, 1).

Lemma 6. chase(p, α) is finite if p < 1/2

Lemma 7. chase(p, α) = 1 if p ≥ α.
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Lemma 8. chase(p, α) = 2 if p2 ≤ α ≤ p.

Lemma 9. chase(p, α) =∞ if and only if p ≥ 1
2 and α < p2.

To compute chase, we first check the finiteness condition in Lemma 9. If chase
is finite, we do a linear scan starting from n = 1, until we obtain

Pr
[
Binomial(n, p) >

n

2

]
≤ α

Properties of the binomial distribution and Lemmas 6 to 9 can be used to
design a more efficient search. Such optimizations were not required because the
linear scan performs sufficiently fast.

E Optimizing x, y, z

In Section 4.2, we described a strategy to obtain the optimal values for x, y, z that
maximize execution speed, constrained on the number of CPU cores. Algorithm 6
summarizes the entire procedure.

During the optimization of x, we need to find the minimum of the objective
function ns(x)nt(x). Since this objective function behaves as a black box, we
employ a linear search to identify the optimal x over the range [1, b], where b
is chosen such that we can establish x ≤ b even without knowing x a priori. We
begin at x = 1 because chase(p, α) is only defined for probabilistic inputs, and
we terminate at x = b since the optimal solution cannot exceed this upper bound.
Our next step is to determine an appropriate value for b.

Notice that ns(x)nt(x) ≥ ns(x) for x > 1 since nt(x) ∈ N ∪ {∞}. Let x0

be an arbitrary anchor point where ns(x0)nt(x0) is finite (By Lemma 6, any
x0 > 2 suffices; we choose x0 = 4 arbitrarily). Therefore, if we find b such that
ns(b) ≥ ns(x0)nt(x0), then

ns(x0)nt(x0) ≤ ns(b) ≤ ns(x) ≤ ns(x)nt(x) ∀ x > b

ns(b) ≤ ns(x) because ns(·) is a linear function with a positive slope. Hence,
no x > b can minimize the objective, ensuring that the optimum x lies within
[1, b]. To compute b, we solve ns(b) = ns(4)nt(4):

b =
κ2(1− κ)

(n+ 1)(1 + κ2)
ns(4)nt(4).

This b satisfies ns(b) ≥ ns(x0)nt(x0) for x0 = 4, which is what we wanted. So
b provides practical upper bound on the linear search of [1, b]. The step size of
the linear search 10−3 works well in practice and is used in our experimentation.

F Theorems related to Deterministic Line Optimization

Theorem 2. Let a deterministic line from q1 to ql contain d double-edge transi-
tions. The language size and sampling probability at ql can be computed deter-
ministically from their values at q1:

|L(ql)| = 2d · |L(q1)| p(ql) =
p(q1)

2d
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Consequently, the full iterative estimation process for intermediate states of the
line can be bypassed.

Proof. Let p(q1) be the probability that a word w ∈ L(q1) is included in a sample
set S(q1). Any such word w is a prefix for exactly 2d distinct words in L(ql). Let
p(ql) = p(q1)/2

d, it is necessary to apply reduce to each of these 2d suffixes with
probability p(ql)/p(q1) = 1/2d. The number of words to retain for each prefix
w ∈ S(q1) is therefore a random variable following the binomial distribution5

Binom(2d, 1/2d). Since enumerating all 2d continuations is infeasible for large
d, we can directly sample from this distribution to determine how many words
to generate. This allows us to create the final sample sets for ql efficiently, as
detailed in Algorithm 10 in Appendix G.

Theorem 3. Given a word w, let its l-bit suffix be wsuffix. The suffix is consistent
with a line’s structure (represented by LS and LF ) if and only if:

(wsuffix ⊕ LS) ∧ LF = 0

where ⊕ is the bitwise XOR operation and ∧ is the bitwise AND operation.

Proof. The term (wsuffix ⊕ LS) identifies all positions where the word’s suffix
differs from the line’s structure. The bitwise AND with LF masks out these
differences at all double-edge positions. The result is zero if and only if there
are no mismatches at any fixed-transition positions. This allows for membership
verification in O(1) time.

G Algorithm listing

Algorithm 6: computeHyperparams(|Qu|, δ, ε)
1 C ← number of processor cores from system
2 κ = ε

1+ε

3 w← wSolver(δ, δ
210 , C)

4 y← 106

5 z← 2
w− 1

y

6 b← κ2(1−κ)
(n+1)(1+κ2) ns(4)nt(4).

7 for x ∈ [1, b], with step size of 10−3. do
8 nt = chase(1/x, 1/(z|Qu|))
9 ns =

⌈
(x)(1+κ2)(n+κ)

κ2(1−κ)

⌉
10 keep (ns, nt) if γ = nsnt is minimal

11 θ ← y(1 + κ)nsnt|Qu|
12 nu = chase(1/y+ 2/z, δ)
13 return (ns, nt, nu, θ)

5 In practice, the binomial distribution Binom(2d, 1/2d) is well-approximated by a
Poisson distribution with parameter λ = 1 when 2d is sufficiently large, since
Binom(n, p)

d−→ Poisson(np) (i.e. the distributions converge) as n→∞ and p→ 0.
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Algorithm 7: wSolver(δ, η, C)
Binary search algorithm to find w∗ given tolerance δ, search sensitivity η, and
number of processor cores C

1 left← δ
2 right← 1.0
3 while right− left > η do
4 mid← (left + right)/2
5 Update left and right according to the value of chase(mid, δ)
6 if chase(mid, δ) ≤ C then
7 w ← mid
8 left← mid

9 else
10 right← mid

11 return w

Algorithm 8: BruteNFA(Au = (Qu, q0I , q
n
F , T u))

// Initialize empty dictionary “words”
1 for q ∈ Qu do
2 words(q)← ∅
3 words(q0I )← {λ}
4 for i← 0 to n− 1 do
5 for qi ∈ Qi do
6 for b ∈ {0, 1} do
7 for each qi+1 ∈ Qi+1 with qi ∈ b-pred(qi+1) do
8 for w ∈ words(qi) do
9 add w · b to words(qi+1)

10 return |words(qnF )|

Algorithm 9: estimateAndSample(q) (with deterministic line)
1 if q is the last state of some deterministic line then
2 q1 ← first state of line
3 d← |double edges in line|
4 Sr(q)← deterministicSampler(S(q1), line)
5 p(q)← p(q1)

2d

6 if q belongs to some deterministic line then
7 return ; // Skip ordinary computation

8 else
9 Continue as before. . .
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Algorithm 10: deterministicSampler((Sr(q1))r∈[γ], line)

Input: Sample sets (Sr(q1))r∈[γ] for the line’s start state; A
deterministic line object line with d double-edge transitions

Output: The final sample sets (S(ql))r∈[γ] for the line’s end state.

1 S′(ql)← empty sets
2 for r ← 1 to γ do
3 foreach wprefix ∈ Sr(q1) do
4 k ← sample from Binom(2d, 1

2d
)

5 for i← 1 to k do
6 w′ ← wprefix
7 foreach transition t in line do
8 if t is a double edge then
9 b← randomly choose from {0, 1}

10 else
11 b← t

12 w′ ← w′ · b
13 add w′ to S′r(ql)

14 return S′(ql)

Algorithm 11: containsWord(line, w)
Input: A deterministic line object “line” (containing its start state

language L(q1), length l, structure mask LS , and fixed-position
mask LF ), and a word w.

Output: true if w is in the language of the line’s final state, false
otherwise.

// 1. Decompose the word
1 wprefix ← shift_right(w, l) ; // Get first |w| − l bits
2 wsuffix ← w ∧ (shift_left(1, l)− 1) ; // Get last l bits
// 2. Check the prefix

3 if wprefix /∈ L(q1) then
4 return false

// 3. Check the suffix
5 if ((wsuffix ⊕ LS) ∧ LF ) ̸= 0 then
6 return false

7 return true
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Algorithm 12: estimateAndSample(q) (optimized)
with pred(q) = (q1, . . . , qk)

1 ρ(q) = min(p(q1), . . . , p(qk))
2 for 1 ≤ j ≤ nt do
3 for 1 ≤ i ≤ ns do
4 r ← j · ns + i
5 Sr(q) = union (q, Sr(q1), . . . , S

r(qk))

6 M̂ j(q)← M̂ j(q) + |Sr(q)|

7 M j(q)← M̂j(q)
ns·ρ(q)

8 ρ̂(q) = median(M1(q), . . . ,Mnt(q))−1

9 p(q) = min(ρ(q), ρ̂(q))

10 N(q) = 1
p(q)

Algorithm 13: union(q, S1, . . . , Sk) (optimized)
where q has k predecessors q1 ≺ · · · ≺ qk and Si ⊆ L(qi) ∀ 1 ≤ i ≤ k

1 S′ = ∅
2 for b ∈ {0, 1} do
3 let J be the subset of {1, . . . , k} such that (qj | j ∈ J) = b-pred(q)
4 for j ∈ J and w ∈ Sj do
5 if w ̸∈ L(qℓ) for every ℓ < j with ℓ ∈ J

6 then add w · b to S′ with probability ρ(q)
ρ(qj)

7 return S′

Algorithm 14: union(q, S1, . . . , Sk) with q ∈ Qi (with caching)
1 S′ = ∅
2 for b ∈ {0, 1} do
3 let J be the subset of {1, . . . , k} such that (qj | j ∈ J) = b-pred(q)
4 for j ∈ J and w ∈ Sj do
5 if cache′i(w · b, q) ∈ [2k−j , 2k−j+1) then add w · b to S′ with

probability ρ(q)
ρ(qj)

6 return S′


