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ABSTRACT
We consider the problem of computing the probability of a query

over a tuple-independent probabilistic database, known as the

probabilistic query evaluation (PQE) problem. The problem is well-

known to be #P-hard in data complexity for conjunctive queries

in general, as well as for several subclasses of conjunctive queries.

Existing approximation approaches for dealing with hard queries

have centred on computing the lineage of the query over the data-

base, which can be intractable for all but the smallest of queries

due to the exponential dependence of the lineage size on the query

length.

In this paper, we take a first step towards bridging this gap, by

showing how to construct a fully polynomial-time randomized ap-

proximation scheme (FPRAS) for the PQE problem for any class

of self-join-free conjunctive queries of bounded hypertree width,

that runs in time polynomial in both the query length and database

instance size. An interesting consequence of our result is the exis-

tence of classes of queries that are #P-hard in data complexity to

evaluate exactly, yet easy to approximate both in terms of query

length and database size.
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• Information systems→ Database query processing; • The-
ory of computation → Formal languages and automata theory; •

Mathematics of computing → Hypergraphs.
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1 INTRODUCTION
A wide range of applications exist that require querying answers

over structured datasets in the presence of uncertainty or impreci-

sion. Consider, for example, knowledge extracted from text using an

imperfect NLP system, or data collected from noisy sensors. Such

information is often specified in a relational format suitable for use
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in a relational database system, but the standard relational model

makes no provisions for modeling the uncertainty inherent in the

data. Probabilistic databases have been proposed as a simple, prin-

cipled formalism for filling this need [12, 23]. In this model, each

fact appearing in an underlying relational database is annotated

with an independent probability, which intuitively represents the

probability of that fact’s presence.

A substantial body of research exists studying the probabilis-

tic query evaluation (PQE) problem, the canonical problem in the

context of probabilistic databases. Given a query specified in some

logical language, and a probabilistic database as described above,

the goal is determine the likelihood of the query holding on a

randomly sampled database, in which each row is included inde-

pendently with the probability of its annotated value. Following the

framework of data and query complexity introduced in the seminal

work of Vardi [24], the problem of PQE has mainly been studied

through the lens of data complexity (barring limited exceptions [4]),

in which we are interested in time complexity with respect to the

size of the database instance for a fixed query. The pioneering work

of Dalvi and Suciu [8–10] eventually culminated in the well-known

dichotomy theorem [11] for PQE of unions of conjunctive queries

(UCQs). The dichotomy theorem states that, given a fixed UCQ,

computing its probability over some input probabilistic database

is either in FP or #P-hard, depending on the query in question.

This dichotomy result was later extended beyond UCQs to the

more general setting of homomorphism-closed queries, in the special

case of probabilistic graphs (essentially probabilistic databases over

schemas limited to binary relations) [2].

While extensive effort has been undertaken to classify queries

by their tractability, the body of work studying how queries that

are known to be intractable can be dealt with in practice has been

more limited. Indeed, the primary approach, exact or otherwise,

to dealing with queries that are #P-hard in data complexity has

been to take the so-called intensional approach to PQE [20], which

involves computing the lineage of the query over the database as a

propositional formula, and computing the weighted model count

of this formula (either exactly or approximately). Unfortunately,

the size of this lineage can be exponential in the length of the

query, thus rendering the intensional approach of limited practical

utility for all but the smallest of queries. For example, evaluating a

conjunctive query of only five atoms over a database with just a few

hundred rows can yield a propositional DNF formula with over 10
12

(one trillion!) clauses, out of reach of even the most cutting-edge

approximate model counters. Consequently, it is desirable to avoid

the above intensional approach, and instead develop algorithms

that can avoid exponential dependence on the query length. This

raises the question:
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Table 1: Tractability results for PQE

Bounded HW? Self-Join-Free? Safe?

Prior Results

(Data Complexity)

Our Results

(Combined Complexity)

✓ ✓ ✓ FP [10] FPRAS
✓ ✓ ✗ #P-hard [10] FPRAS
✗ ✓ ✓ FP [10] Open

✓/✗ ✗ ✓ Depends [11] Open

Note: The top two rightmost cells highlighted in bold indicate the contribution of this paper. The “Bounded HW?” and “Self-Join-Free?” columns, respectively, denote bounded

hypertree width and self-join-freeness for all queries in the class. The “Safe?” column denotes the syntactic notion of safety for queries in the class, as defined by Dalvi and Suciu [11].

Can we design an approximation scheme with guar-

antees for the PQE problem, whose runtime is poly-

nomial in both the query length and database size?

Note that we likely cannot hope to get a fully polynomial-time ap-

proximation scheme (FPRAS) applicable to all conjunctive queries.

Recall that Boolean conjunctive query evaluation on deterministic

databases is NP-complete in combined complexity [7]. If such an

FPRAS for probabilistic query evaluation were possible, we could

answer any Boolean conjunctive query on a deterministic database

with high probability in polynomial combined complexity (just set

all probabilities to 1), hence implying NP ⊆ BPP.
Therefore, we instead answer the question posed above in the

affirmative for a large class of queries whose deterministic query

evaluation problem is tractable. In particular, we propose an FPRAS

for the PQE problem, applicable to any class of conjunctive queries

of bounded hypertree width [18], so long as queries in the class do

not contain repeated relation symbols (in other words, they are

self-join-free). Crucially, our FPRAS runs in time polynomial in both

the query length and database instance size, setting it apart from

classical intensional approaches described above which suffer from

an exponential dependence on the query length. Indeed, although

we are not the first to study approximation for the PQE problem [14–

16, 22], so far no other techniques have been proposed that have

both polynomial runtime in combined complexity for a wide class

of queries, as well as rigorous guarantees on the quality of the

probability computed.

Finally, it is worth remarking that the study of bounded hyper-

tree width queries is motivated by the observation that conjunctive

queries found in real-world benchmarks typically have very low

hypertree width in practice (usually no more than 3) [17]. There-

fore, we believe that our approach could serve as a useful starting

point for the development of practical, scalable algorithms for the

probabilistic query evaluation problem.

1.1 Technical Contributions
The primary contribution of our work is to establish the following

result.

Theorem 1. Let 𝑄 be a self-join-free conjunctive query of bounded

hypertree width, and 𝐻 a probabilistic database instance. Then there

exists an algorithm PQEEstimate such that, for all 𝜖 ∈ (0, 1):
(1 − 𝜖) Pr

𝐻
(𝑄) ≤ PQEEstimate(𝑄,𝐻 ) ≤ (1 + 𝜖) Pr

𝐻
(𝑄)

with high probability. Moreover, PQEEstimate has runtime:

poly( |𝑄 |, |𝐻 |, 𝜖−1)

An interesting consequence of the FPRAS presented here is the

existence of classes of queries for which PQE is provably #P-hard
even in data complexity alone, yet are tractable to approximate

in both database size and query length. For example, consider the

class 3Path = ∪𝑖≥3𝑄𝑖 of self-join-free path queries of length at

least three:

𝑄𝑖 = 𝑅1 (𝑥1, 𝑥2), . . . , 𝑅𝑖 (𝑥𝑖 , 𝑥𝑖+1)

It is easy to check that every query in the class 3Path is non-

hierarchical [11], which is known to be an equivalent condition

to #P-hardness in data complexity for self-join-free conjunctive

queries. Attempts to approximate its probability by computing its

lineage as a weighted DNF formula are unlikely to succeed: the

lineage of 𝑄𝑖 over a database 𝐷 expressed as a propositional for-

mula can have size Θ( |𝐷 |𝑖 ). However, path queries have bounded

hypertree width—in fact, since they are acyclic they have hypertree

width 1. The FPRAS given here therefore shows that the probability

of any query in the class can be tractably approximated in a manner

polynomial not only in terms of |𝐷 |, but also 𝑖 , thereby eliminat-

ing the exponential dependence. We hence obtain the following

corollary.

Corollary 1. There exists a class of queries C such that:

(1) for an arbitrary 𝑞 ∈ C, PQE for 𝑞 on an input probabilistic

database instance is #P-hard
(2) for an arbitrary 𝑞 ∈ C and probabilistic database instance 𝐻 ,

approximating Pr𝐻 (𝑄) to a (1±𝜖)-factor with high probability
can be performed in time poly( |𝑄 |, |𝐻 |, 𝜖−1)

We contextualize our main result in Table 1, by placing our FPRAS

among some existing tractability results for PQE.

Key Ideas. Our approach follows the spirit of seminal work by Ko-

laitis and Vardi [21] that connected two fundamental, yet seemingly

unrelated problems: conjunctive query containment and constraint

satisfaction. While conjunctive query containment and constraint

satisfaction are decision problems, the PQE problem is a counting

problem, and therefore, we must turn our attention to correspond-

ing counting problems. In this work, we focus on uncovering a

fundamental relationship between PQE and counting problems in

the context of tree automata. In particular, we demonstrate that

PQE for self-join-free conjunctive queries of bounded hypertree

width can be reduced to counting the number of trees accepted by

a non-deterministic finite tree automaton (NFTA). This NFTA is

constructed from both the query and database instance together.

We can then leverage a recent breakthrough FPRAS for counting
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these trees, that was originally designed to tackle the entirely sep-

arate problem of answer counting for (bounded hypertree width)

conjunctive queries [6]. Although some aspects of the reduction

employed there are similar to the one here, the fact that the same

approximation result can also be leveraged for PQE is not at all

obvious. In the context of PQE there are new challenges that we

must address: namely, dealing with the exponential number of

subinstances possible, as well as incorporating individual fact prob-

abilities.

At a high level, our procedure as it applies to counting subin-

stances of 𝐷 that satisfy 𝑄 (a special case of the PQE problem,

known as uniform reliability [3, 19]) is as follows. We take the hy-

pertree decomposition of 𝑄 , which intuitively gives us an efficient

evaluation plan for 𝑄 on any database 𝐷 . We then note the first

vertex in the hypertree decomposition that is a “covering vertex” for

some atom in𝑄—essentially, this means that once we have reached

that point in the decomposition, we have fixed our witness for that

atom. Since 𝑄 is self-join-free, we know that upon fixing that fact

we are free to make any selection of the remaining non-witnessing

facts for that relation in 𝐷 . Thus, we can design our tree automaton

to accept all the possible traversals of the hypertree decomposition

with assignments from facts in 𝐷 . A key point to note here is that

even though the number of satisfying subinstances of 𝐷 may be

exponentially large, the number of witnesses in 𝐷 of any atom in

𝑄 is at most the size of 𝐷 , making such a construction feasible.

In order to extend this approach to the PQE problem in gen-

eral, we also need a way to incorporate the fact probabilities into

the reduction. To this end, we substitute every transition with a

new automaton gadget through a construction based on binary

comparators, in the process scaling the number of trees accepted

proportional to the fact probabilities. We can then apply the afore-

mentioned FPRAS to count the trees accepted by this NFTA, thereby

yielding our desired result.

Organization. The rest of the paper is organized as follows: we

review some technical background in Section 2. Next, in Section 3,

we build some intuition on how probabilistic databases and au-

tomata are connected, by proving a simplified theorem pertaining

to path queries on graphs that is a special case of our main result.

Section 4 is split into two parts: in Section 4.1, we introduce aug-

mented NFTAs, which form a syntactic building block we use in the

main result as it applies to uniform reliability in Section 4.2. We

then follow a similar approach in Section 5, by first introducing

NFTAs with multipliers in Section 5.1, which we then use in prov-

ing the primary theorem of this paper for PQE in Section 5.2. We

finally conclude in Section 6, and discuss some possible directions

for future work.

2 PRELIMINARIES
We begin by reviewing some background on probabilistic databases,

conjunctive queries, and automata.

Probabilistic Databases. A relational schema 𝜎 is a collection of

relation names, each with an associated arity. We assume the ex-

istence of a countably infinite universe of constants 𝑈 that serve

as values that can appear in our databases. A database instance

(or simply database) 𝐷 over 𝜎 is a finite set of facts of the form

𝑅𝑖 (𝑐1, . . . , 𝑐𝑘 ), where 𝑅𝑖 is some relation name in 𝜎 with arity 𝑘 ,

and 𝑐1, . . . , 𝑐𝑘 ∈ 𝑈 . We define the size |𝐷 | of a database instance
as the number of facts appearing in it. A database instance 𝐷′

is

said to be a subinstance of 𝐷 if 𝐷′ ⊆ 𝐷 .

A probabilistic database instance 𝐻 = (𝐷, 𝜋) is a database in-

stance 𝐷 equipped with a probability function 𝜋 : 𝐷 → [0, 1],
mapping each fact in 𝐷 to an independent probability label. For

the sake of more easily formalizing the representation of 𝜋 , we

assume in this paper that probability labels are rational (that is,

𝜋 : 𝐷 → [0, 1] ∩ Q). The labelling 𝜋 induces a probability distribu-

tion on the subinstances 𝐷′ ⊆ 𝐷 as follows:

Pr

𝐻
(𝐷′) =

∏
𝑓𝑖 ∈𝐷 ′

𝜋 (𝑓𝑖 )
∏

𝑓𝑖 ∈𝐷\D′
(1 − 𝜋 (𝑓𝑖 ))

A probabilistic database instance 𝐻 ′ = (𝐷′, 𝜋) is a subinstance

of 𝐻 = (𝐷, 𝜋) (denoted 𝐻 ′ ⊆ 𝐻 ) if 𝐷′ ⊆ 𝐷 , and they have the

same labelling function 𝜋 . The size of |𝐻 | of a probabilistic database
instance is defined as the size of its underlying database instance |𝐷 |,
plus the aggregate size of the bit encodings of its fact probabilities.

Conjunctive Queries. We focus on (Boolean) conjunctive queries:

existentially quantified constant-free first-order sentences com-

prising conjunctions of atoms, which we write in the form 𝑄 =

𝑅1 (𝑥1), . . . , 𝑅𝑛 (𝑥𝑛). The set of variables occurring in 𝑄 is denoted

by vars(𝑄), and the set of atoms by atoms(𝑄). Similarly, for any

atom𝐴 ∈ atoms(𝑄), vars(𝐴) denotes the set of variables occurring
in 𝐴. The notation is likewise extended to sets of atoms: for a set

of atoms 𝑅 ⊆ atoms(𝑄), we define vars(𝑅) = ∪𝐴∈𝑅vars(𝐴). We

define the length of a query |𝑄 | as the number of atoms it contains.

If 𝑄 contains no repeated relation names, then 𝑄 is said to be self-

join-free. A path query is a conjunctive query 𝑄 , comprising only

binary atoms, of the form:

𝑄 = 𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), . . . , 𝑅𝑛 (𝑥𝑛, 𝑥𝑛+1)

We use the usual semantics to determine if a database instance

𝐷 satisfies a conjunctive query 𝑄 , and write 𝐷 |= 𝑄 to indicate

this. The probability of a query on a probabilistic database instance

𝐻 = (𝐷, 𝜋) is:
Pr

𝐻
(𝑄) =

∑︁
𝐷 ′⊆𝐷
𝐷 ′ |=𝑄

Pr(𝐷′)

Computing the probability of a query over a given probabilistic

database instance is known as the probabilistic query evaluation

(PQE) problem. For a conjunctive query 𝑄 and database 𝐷 , we

denote by UR(𝑄, 𝐷) the uniform reliability of 𝑄 on 𝐷 : the number

of subinstances of 𝐷 that satisfy 𝑄 . Note that this is equivalent

(up to a factor of 2
|𝐷 |

) to computing Pr𝐻 (𝑄), in the special case

where 𝐻 is the probabilistic database comprising 𝐷 equipped with

uniform tuple probabilities of 0.5.

Strings and String Automata. A string over an alphabet Σ is a

sequence 𝑤1 . . .𝑤𝑛 of symbols, with each 𝑤𝑖 ∈ Σ. We denote the

empty string with no symbols by 𝜆. We denote by Σ∗ the set of all
strings over Σ. A set 𝐴 of strings over Σ is said to be prefix-closed,

if 𝑢 · 𝑣 ∈ 𝐴 implies 𝑢 ∈ 𝐴 for any 𝑢, 𝑣 ∈ Σ∗, where 𝑢 · 𝑣 denotes the
concatenation of 𝑢 and 𝑣 . Further, denote by 𝐴𝑖

the set of strings

obtainable by concatenation of 𝑖 strings selected from𝐴, and define

𝐴0 = {𝜆}.



PODS ’23, June 18–23, 2023, Seattle, WA, USA Timothy van Bremen and Kuldeep S. Meel

A non-deterministic finite (string) automaton (NFA) is a tuple

(𝑆, Σ, 𝛿, 𝐼 , 𝐹 ) where 𝑆 is a finite set of states, Σ is a finite alphabet

of input symbols, 𝛿 : 𝑆 × Σ → 2
𝑆
is a transition function, 𝐼 ⊆ 𝑆

is a set of initial states, and 𝐹 ⊆ 𝑆 is a set of accepting states. We

define the size of an automaton M, denoted |M|, as the size of the
encoding of its transition relation 𝛿 over a suitable alphabet. We

assume the standard semantics for deciding whether a string lies

in the language L(M) of strings accepted by M. We denote by

L𝑛 (𝑀) the (finite) language of strings of length𝑛 accepted by𝑀 . By

the result in [5], we assume the existence of an FPRAS CountNFA

for approximating |L𝑛 (M)|, running in time polynomial in 𝑛 and

|M|.

Trees and Tree Automata. For 𝑘 ∈ N, a 𝑘-tree (or simply tree) is a

prefix-closed non-empty finite subset 𝑡 ⊆ [𝑘]∗. A path is a 1-tree.

The root of a tree 𝑡 is the empty string 𝜆 ∈ 𝑡 , and the maximal

elements of 𝑡 under prefix order are called leaves. For 𝑢, 𝑣 ∈ 𝑡 , 𝑢 is

said to be a parent of 𝑣 , and 𝑣 a child of𝑢, if 𝑣 = 𝑢 · 𝑖 for some 𝑖 ∈ [𝑘].
The size of 𝑡 is simply its cardinality |𝑡 |. Given a finite alphabet Σ,
we denote by Trees𝑘 [Σ] the language of 𝑘-trees in which each node

𝑢 ∈ 𝑡 is labelled with a symbol from Σ. We abuse notation slightly

and write 𝑡 (𝑢) to denote the label of a node 𝑢 ∈ 𝑡 . We then define

a (top-down) non-deterministic finite tree automaton (NFTA) in the

standard manner, as a tuple T = (𝑆, Σ,Δ, 𝑠init), where 𝑆 is a finite set
of states, Σ is a finite alphabet of input symbols, Δ ⊆ 𝑆×Σ×(∪𝑘

𝑖=0
𝑆𝑖 )

is the transition relation, and 𝑠init ∈ 𝑆 is the initial state. Without

loss of generality, we also slightly abuse notation by allowing 𝜆-

transitions of the form (𝑠, 𝜆, 𝑅) for 𝑠 ∈ 𝑆 and 𝑅 ∈ ∪𝑘
𝑖=0

𝑆𝑖 , noting that

such an automaton can easily be converted to an equivalent one

without 𝜆-transitions using standard procedures. We sometimes

refer to NFTAs as ordinary NFTAs, to emphasize their distinction

from augmented NFTAs and NFTAs with multipliers defined later

in the paper. Like for NFAs, the size of an NFTA T , denoted |T |, is
defined as the size of the encoding of its transition relation Δ over

some suitable alphabet.

A run of T over a labelled tree 𝑡 ∈ Trees𝑘 [Σ] is a function

𝜌 : 𝑡 → 𝑆 such that for every 𝑢 ∈ 𝑡 with children 𝑢 · 1, . . . , 𝑢 · 𝑛,
we have (𝜌 (𝑢), 𝑡 (𝑢), 𝜌 (𝑢 · 1) . . . 𝜌 (𝑢 · 𝑛)) ∈ Δ. In particular, if 𝑢 is a

leaf, then we require (𝜌 (𝑢), 𝑡 (𝑢), 𝜆) ∈ Δ. We say T accepts 𝑡 if there

exists a run of T over 𝑡 , and write L(T ) to denote the language of

all labelled trees accepted by T , andL𝑛 (T ) for the (finite) language
of labelled trees of size 𝑛 accepted by T . By the result in [6], we

assume the existence of an FPRAS CountNFTA for approximating

|L𝑛 (T )|, running in time polynomial in 𝑛 and |T |.

Hypertree Decompositions. We briefly review some background

on hypertree decompositions, and refer the reader to the compre-

hensive paper by Gottlob et al. [18] for more details. A hypertree

for a conjunctive query 𝑄 is a tuple ⟨𝑇, 𝜒, 𝜉⟩, where 𝑇 = (𝑁, 𝐸)
is a tree on vertices 𝑁 with edges 𝐸, 𝜒 and 𝜉 are labelling func-

tions mapping each 𝑝 ∈ 𝑁 to sets of variables 𝜒 (𝑝) ⊆ vars(𝑄)
and atoms 𝜉 (𝑝) ⊆ atoms(𝑄). We use vertices(𝑇 ) as shorthand to

denote 𝑁 , the set of vertices of 𝑇 . Moreover, for a set of vertices

𝑃 ⊆ vertices(𝑇 ), we define 𝜉 (𝑃) = ∪𝑝∈𝑃 𝜉 (𝑝).
A hypertree decomposition for a conjunctive query 𝑄 is a hyper-

tree ⟨𝑇, 𝜒, 𝜉⟩ that satisfies the following conditions:

(1) for each atom 𝐴 ∈ atoms(𝑄), there exists 𝑝 ∈ vertices(𝑇 )
such that vars(𝐴) ⊆ 𝜒 (𝑝)

(2) for each variable 𝑥 ∈ vars(𝑄), the set {𝑝 ∈ vertices(𝑇 ) | 𝑥 ∈
𝜒 (𝑝)} induces a connected subtree of 𝑇

(3) for each vertex 𝑝 ∈ vertices(𝑇 ), 𝜒 (𝑝) ⊆ vars(𝜉 (𝑝))
(4) for each vertex 𝑝 ∈ vertices(𝑇 ), vars(𝜉 (𝑝)) ∩ 𝜒 (𝑇𝑝 ) ⊆ 𝜒 (𝑝),

where 𝑇𝑝 is the subtree of 𝑇 rooted at 𝑝

A hypertree decomposition is said to have width 𝑘 if

max𝑝∈vertices(𝑇 ) |𝜉 (𝑝) | = 𝑘 . The width of a conjunctive query 𝑄 is

the minimal width across all its possible hypertree decompositions.

A class of conjunctive queries is said to have bounded hypertree

width if all queries in the class have hypertree width at most 𝑘 , for

some constant 𝑘 . For any input conjunctive query of hypertree

width 𝑘 , one can compute in time polynomial in the query size a

hypertree decomposition of width at most 𝑘 .

Let 𝑄 be a conjunctive query, and ⟨𝑇, 𝜒, 𝜉⟩ be a hypertree de-

composition of 𝑄 . For any 𝐴 ∈ atoms(𝑄), we call a vertex 𝑝 ∈
vertices(𝑇 ) a covering vertex for 𝐴 if 𝐴 ∈ 𝜉 (𝑝) and vars(𝐴) ⊆ 𝜒 (𝑝).

We say a hypertree decomposition ⟨𝑇, 𝜒, 𝜉⟩ is complete if every

atom𝐴 ∈ atoms(𝑄) has a covering vertex in𝑇 . Any decomposition

of width 𝑘 for a conjunctive query𝑄 can be transformed in logspace

to a complete decomposition of equal width by the following pro-

cess: for any atom 𝐴 ∈ atoms(𝑄) that does not have a correspond-
ing covering vertex, create a new vertex 𝑝𝐴 with 𝜒 (𝑃) = vars(𝐴)
and 𝜉 (𝑃) = {𝐴}. Then attach 𝑝𝐴 as a child of some vertex 𝑝 that

satisfies 𝜒 (𝑃) ⊆ vars(𝐴) (such a vertex must exist by condition (1)

in the definition of a hypertree decomposition).

We finish by remarking that removing condition (4) in the defi-

nition of a hypertree decomposition above results in defining the

closely related notion of a generalized hypertree decomposition. How-

ever, testing whether a query has generalized hypertree width at

most 𝑘 (for a fixed constant 𝑘 ≥ 3) is NP-complete. Moreover, for

any conjunctive query 𝑄 it is known that ghtw(𝑄) ≤ htw(𝑄) ≤
3 · ghtw(𝑄) + 1, where (g)htw denotes (generalized) hypertree

width [1]. Hence, we write our results here in terms of hypertree

decompositions, bearing in mind that our results apply equally to

queries of bounded generalized hypertree width.

3 A WARM-UP: PATH QUERIES ON GRAPHS
In this section, we prove a special case of the main result of this

paper. In particular, we show the existence of an FPRAS for comput-

ing the uniform reliability of self-join-free path queries on database

instances where all relations are binary—in other words, labelled

graphs. In doing so, we build some intuition on the proof of the full

theorem given later.

Theorem 2. Let 𝐷 be a database instance in which all relations

are binary, and 𝑄 be a self-join-free path query. Then there exists an

algorithm PathEstimate such that, for all 𝜖 ∈ (0, 1),
(1 − 𝜖)UR(𝑄,𝐷) ≤ PathEstimate(𝑄,𝐷) ≤ (1 + 𝜖)UR(𝑄,𝐷)

with high probability. Moreover, PathEstimate has runtime:

poly( |𝑄 |, |𝐷 |, 𝜖−1)

Proof intuition. Let 𝐷 be our input database instance, and 𝑄

the self-join-free path query, taking the form:

𝑄 = 𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), . . . , 𝑅𝑛 (𝑥𝑛, 𝑥𝑛+1)



Probabilistic Query Evaluation: The Combined FPRAS Landscape PODS ’23, June 18–23, 2023, Seattle, WA, USA

with all of the 𝑅𝑖 (for 𝑖 ∈ [𝑛]) distinct.
Our ultimate goal will be to construct an NFAM = (𝑆, Σ, 𝛿, 𝐼 , 𝐹 )

whose accepted strings correspond one-to-one with the subin-

stances of 𝐷 that satisfy 𝑄 , upon which we can apply the Count-

NFA FPRAS. Before doing so, we first construct a slightly differ-

ent NFA M′ = (𝑆 ′, Σ′, 𝛿 ′, 𝐼 , 𝐹 ), as follows: let the alphabet be

Σ′ = {𝑅𝑖 (𝑥,𝑦) | 𝑅𝑖 (𝑥,𝑦) ∈ 𝐷}, and add to 𝑆 ′ one state [𝑖, 𝑥,𝑦]
for each fact 𝑅𝑖 (𝑥,𝑦) ∈ 𝐷 , as well as a single auxiliary state

𝑠
end

. Define the transition relation 𝛿 ′ by adding to 𝛿 ′ the tu-

ple ( [𝑖, 𝑥,𝑦], 𝑅𝑖 (𝑥,𝑦), [𝑖 + 1, 𝑦, 𝑧]) for every joining pair of facts

𝑅𝑖 (𝑥,𝑦), 𝑅𝑖+1 (𝑦, 𝑧) ∈ 𝐷 whose relations occur in sequence in

𝑄 , as well as the tuples ( [𝑛, 𝑥,𝑦], 𝑅𝑛 (𝑥,𝑦), 𝑠end) for every fact

of the form 𝑅𝑛 (𝑥,𝑦) ∈ 𝐷 . Finally, define the initial state set

𝐼 = {[1, 𝑥,𝑦] | 𝑅1 (𝑥,𝑦) ∈ 𝐷}, and accepting state set 𝐹 = {𝑠
end

}.
It is not difficult to see that every string accepted byM′

takes

the form 𝑅1 (𝑧1, 𝑧2)𝑅2 (𝑧2, 𝑧3) . . . 𝑅𝑛 (𝑧𝑛, 𝑧𝑛+1), corresponding one-

to-one to the possible sequences of witnessing facts for 𝑄 on 𝐷 .

Every subinstance 𝐷′ ⊆ 𝐷 must therefore contain all of the facts in

one of these strings to be a satisfying subinstance for 𝑄 . Moreover,

as long as our selection of facts contains the facts in one of these

strings, we can make any choice as to the presence of the remain-

ing facts in 𝐷 . However, we want to do this in a way that avoids

representing the same subinstance twice. We can avoid this issue

by:

(1) indicating the absence of a fact from our subinstance, rather

than only the presence (so all strings accepted should have

length |𝐷 |); and
(2) ensuring a consistent ordering in which the symbols indi-

cating each fact’s presence or absence in 𝐷′
appears in any

accepted string

Notice that M′
already accepts strings with atoms appearing only

in the order they appear in the query𝑅1 ≺ · · · ≺ 𝑅𝑛 . It will therefore

suffice to fix an arbitrary total ordering ≺𝑖 on the 𝑅𝑖 -facts for each

atom 𝑅𝑖 . We are now ready to begin the construction of M =

(𝑆, Σ, 𝛿, 𝐼 , 𝐹 ). We first expand Σ to allow us to indicate the absence

of a fact by defining Σ = Σ′ ∪ {¬𝑅𝑖 (𝑥,𝑦) | 𝑅𝑖 (𝑥,𝑦) ∈ 𝐷}. We also

define an expanded state set:

𝑆 = 𝑆 ′ ∪ {[𝑖, 𝑎, 𝑏, 𝑥,𝑦] | 𝑅𝑖 (𝑎, 𝑏), 𝑅𝑖 (𝑥,𝑦) ∈ 𝐷}

Intuitively, the purpose of the state [𝑖, 𝑎, 𝑏, 𝑥,𝑦] is to record the

presence or absence of the fact 𝑅𝑖 (𝑎, 𝑏), given that 𝑅𝑖 (𝑥,𝑦) has been
chosen as our witness for the 𝑅𝑖 -atom in 𝑄 . We now rebuild our

transition set 𝛿 from scratch, by adding the following tuples for

every 𝑖 ∈ [𝑛−1] and joining pair of facts𝑅𝑖 (𝑎𝑘 , 𝑏𝑘 ), 𝑅𝑖+1 (𝑏𝑘 , 𝑓 ) ∈ 𝐷 :

( [𝑖, 𝑎1, 𝑏1, 𝑎𝑘 , 𝑏𝑘 ], 𝑅𝑖 (𝑎1, 𝑏1), [𝑖, 𝑎2, 𝑏2, 𝑎𝑘 , 𝑏𝑘 ])
( [𝑖, 𝑎1, 𝑏1, 𝑎𝑘 , 𝑏𝑘 ], ¬𝑅𝑖 (𝑎1, 𝑏1), [𝑖, 𝑎2, 𝑏2, 𝑎𝑘 , 𝑏𝑘 ])

. . .

( [𝑖, 𝑎𝑘 , 𝑏𝑘 , 𝑎𝑘 , 𝑏𝑘 ], 𝑅𝑖 (𝑎𝑘 , 𝑏𝑘 ), [𝑖, 𝑎𝑘+1, 𝑏𝑘+1, 𝑎𝑘 , 𝑏𝑘 ])
. . .

( [𝑖, 𝑎𝑐𝑖 , 𝑏𝑐𝑖 , 𝑎𝑘 , 𝑏𝑘 ], 𝑅𝑖 (𝑎𝑐𝑖 , 𝑏𝑐𝑖 ), [𝑖 + 1, 𝑝, 𝑞, 𝑏𝑘 , 𝑓 ])
( [𝑖, 𝑎𝑐𝑖 , 𝑏𝑐𝑖 , 𝑎𝑘 , 𝑏𝑘 ], ¬𝑅𝑖 (𝑎𝑐𝑖 , 𝑏𝑐𝑖 ), [𝑖 + 1, 𝑝, 𝑞, 𝑏𝑘 , 𝑓 ])

where 𝑅𝑖 (𝑎1, 𝑏1) ≺𝑖 · · · ≺𝑖 𝑅𝑖 (𝑎𝑘 , 𝑏𝑘 ) ≺𝑖 · · · ≺𝑖 𝑅𝑖 (𝑎𝑐𝑖 , 𝑏𝑐𝑖 ) are all
the 𝑅𝑖 -facts in 𝐷 , and 𝑅𝑖+1 (𝑝, 𝑞) is the ≺𝑖+1-minimal fact in 𝐷 . Next,

for every 𝑅𝑛 (𝑎𝑘 , 𝑏𝑘 ) ∈ 𝐷 add the tuples:

( [𝑛, 𝑎1, 𝑏1, 𝑎𝑘 , 𝑏𝑘 ], 𝑅𝑖 (𝑎1, 𝑏1), [𝑖, 𝑎2, 𝑏2, 𝑎𝑘 , 𝑏𝑘 ])
( [𝑛, 𝑎1, 𝑏1, 𝑎𝑘 , 𝑏𝑘 ], ¬𝑅𝑖 (𝑎1, 𝑏1), [𝑖, 𝑎2, 𝑏2, 𝑎𝑘 , 𝑏𝑘 ])

. . .

( [𝑛, 𝑎𝑘 , 𝑏𝑘 , 𝑎𝑘 , 𝑏𝑘 ], 𝑅𝑖 (𝑎𝑘 , 𝑏𝑘 ), [𝑖, 𝑎𝑘+1, 𝑏𝑘+1, 𝑎𝑘 , 𝑏𝑘 ])
. . .

( [𝑛, 𝑎𝑐𝑛 , 𝑏𝑐𝑛 , 𝑎𝑘 , 𝑏𝑘 ], 𝑅𝑖 (𝑎𝑐𝑛 , 𝑏𝑐𝑛 ), 𝑠end)
( [𝑛, 𝑎𝑐𝑛 , 𝑏𝑐𝑛 , 𝑎𝑘 , 𝑏𝑘 ], ¬𝑅𝑖 (𝑎𝑐𝑛 , 𝑏𝑐𝑛 ), 𝑠end)

where 𝑅𝑛 (𝑎1, 𝑏1) ≺𝑛 · · · ≺𝑛 𝑅𝑛 (𝑎𝑘 , 𝑏𝑘 ) ≺𝑛 · · · ≺𝑛 𝑅𝑖 (𝑎𝑐𝑛 , 𝑏𝑐𝑛 ) are
the 𝑅𝑛-facts in𝐷 . Finally, set 𝐼 = {[1, 𝑎, 𝑏, 𝑥,𝑦] ∈ 𝑆}, and 𝐹 = {𝑠

end
}.

One can check that the strings accepted by M will always list the

presence or absence of each fact in a consistent order. Moreover,

by construction the strings it accepts (all of which have length |𝐷 |)
correspond precisely to the subsets 𝐷′ ⊆ 𝐷 satisfying 𝑄 . Lastly,

note that |M| is clearly polynomial in both |𝑄 | and |𝐷 |.
Thus, we can apply the FPRAS CountNFA [5] on M to approx-

imate the number of strings accepted of length |𝐷 |, which yields

with high probability a (1 ± 𝜖)-approximation of the uniform relia-

bility of𝑄 on𝐷 . Hence, we can realize the algorithm PathEstimate

as above. □

4 UNIFORM RELIABILITY
In this section, we build on the intuition presented in the previ-

ous section, generalizing the approach there so that it applies to

computing uniform reliability of self-join-free queries of bounded

hypertree width over arbitrary instances. To do so, we move from

the setting of string automata to tree automata for the remainder

of this paper.

4.1 Augmented NFTAs
We first introduce augmented NFTAs, which augment NFTAs with

two additional constructs:

(1) (String Annotations) First, we extend the definition of an

NFTA to allow a transition to be annotated with a string

of symbols 𝛾1 . . . 𝛾𝑛 (rather than a single symbol), with the

implicit meaning that an additional 𝑛 − 1 fresh intermediate

states are inserted between the start and end states of the

transition so that the string 𝛾1 . . . 𝛾𝑛 is accepted.

(2) (? Symbols) Second, we also allow a symbol 𝛾𝑖 appearing in

this string to be annotated with a
?
, as shorthand expressing

that either the symbol 𝛾𝑖 or ¬𝛾𝑖 should be accepted (note

that this adds no additional states).

We distil the two ideas above into the definition of an augmented

NFTA below, and then define its semantics in terms of a translation

into an ordinary NFTA.

Definition 1 (Augmented NFTA). An augmented (top-down) non-

deterministic finite tree automaton (augmented NFTA, for short) is

a tuple T + = (𝑆, Σ,Δ, 𝑠init), where 𝑆 is a finite set of states, Σ is a

finite alphabet of input symbols, and 𝑠init ∈ 𝑆 is the initial state.

The transition relation is defined as Δ ⊆ 𝑆 × Γ × (∪𝑘
𝑖=0

𝑆𝑖 ), where
Γ = {𝛾 | 𝛾 ∈ 𝜁 ∗} \ 𝜆 and 𝜁 = {𝛼, 𝛼? | 𝛼 ∈ Σ}. In other words, Γ is the

set of non-empty strings formed by symbols from Σ, where some of

these symbols may be annotated with a
?
. Analogously to ordinary
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NFTAs, we define the size of an augmented NFTA as the size of the

encoding of its transition relation.

Semantics (Augmented NFTA). The semantics for deciding the

acceptance of a labelled tree 𝑡 ∈ Trees𝑘 [Σ] by an augmented NFTA

T + = (𝑆, Σ,Δ, 𝑠init) is defined by translating T +
into an ordinary

NFTA T , and checking whether T accepts 𝑡 . The translation happens

in two stages:

(1) First, replace every tuple in Δ of the form:

(𝑠, 𝛾1𝛾2 . . . 𝛾 𝑗 , 𝑠1 . . . 𝑠𝑘 )

such that 1 ≤ 𝑐 ≤ 𝑘 and 𝛾1𝛾2 . . . 𝛾 𝑗 is a string of length 𝑗 > 1

with the series of transitions:

(𝑠, 𝛾1, 𝑟1)
(𝑟1, 𝛾2, 𝑟2)

. . .

(𝑟 𝑗−1, 𝛾 𝑗 , 𝑠1 . . . 𝑠𝑘 )

where 𝑟1, . . . , 𝑟 𝑗−1 are fresh states not occurring elsewhere in

𝑆 , obtaining a new transition relation Δ′
. Defining 𝑆 ′ = 𝑆 ∪

{𝑟1, . . . , 𝑟 𝑗−1}, we therefore obtain a new augmented NFTA

T ′+ = (𝑆 ′, Σ,Δ′, 𝑠init).
(2) Next, we turn the augmented NFTA T ′+

obtained above into

an ordinary NFTA T . We first define Σ′ = {𝛼,¬𝛼 | 𝛼 ∈ Σ}.
We then replace every transition in Δ′

of the form:

(𝑠, 𝛼?, 𝑠1 . . . 𝑠𝑘 )

where 𝛼 ∈ Σ with the two transitions:

(𝑠, 𝛼, 𝑠1 . . . 𝑠𝑘 )
(𝑠,¬𝛼, 𝑠1 . . . 𝑠𝑘 )

to get a new transition relation Δ′′
, thereby obtaining our final

NFTA T = (𝑆, Σ′,Δ′′, 𝑠init).

Finally, we remark that the translation outlined above does not lead

to any material blow-up in size of the translated NFTA.

Remark 1. The translation defined above from an augmented NFTA

T +
to its corresponding ordinary NFTA T can be performed in time

𝑂 (poly( |T + |)).

4.2 Result
In this section, we show our approximation scheme as far as it

applies to computing uniform reliability, which hinges on the con-

struction of an augmented NFTA from the query-database pair,

such that there is a bijection between the trees accepted by the

NFTA with the subinstances of the database satisfying the query.

To do so, we traverse the hypertree decomposition in a manner

analogous to [6, Theorem 3.2], but take into account a number of

adapations necessary for the uniform reliability problem that are

motivated in the previous section.

Proposition 1. Let𝑄 be a self-join-free conjunctive query of bounded

hypertree width, and𝐷 a database instance defined only over relations

occurring in 𝑄 . Then we can construct an augmented NFTA T +
in

time poly( |𝑄 |, |𝐷 |) such that |L |𝐷 | (T +) | = UR(𝑄, 𝐷).

Proof. Let 𝑄 be a self-join-free query of bounded hypertree

width, and 𝐷 be a database instance defined only over relations

occurring in 𝑄 . We will construct an augmented NFTA T + =

(𝑆, Σ,Δ, 𝑠init) satisfying the desired properties. For each relation 𝑅𝑖
occurring in 𝐷 , fix some total ordering ≺𝑖 over the 𝑅𝑖 -facts in 𝐷 . Fix

also a total ordering ≺atoms on atoms(𝑄). By the results discussed

earlier, we can efficiently construct a complete hypertree decompo-

sition ⟨𝑇, 𝜒, 𝜉⟩ of 𝑄 of constant width in polynomial time. We fix

another total ordering ≺vertices, this one over vertices(𝑇 ), with the

requirement that for any 𝑝, 𝑞 ∈ vertices(𝑇 ), we have 𝑝 ≺vertices 𝑞

if and only if depth(𝑝) ≤ depth(𝑞) (where depth(𝑝) denotes the
distance of 𝑝 from the root vertex). We are now ready to begin the

construction.

We start by fixing the alphabet Σ = {𝑅𝑖 (𝑥) | 𝑅𝑖 (𝑥) ∈ 𝐷}, that is,
one symbol per fact in 𝐷 . Given a tuple of variables 𝑥 = (𝑥1, . . . , 𝑥𝑟 )
and constants 𝑎 = (𝑎1, . . . , 𝑎𝑟 ), we use the notation 𝑥 ↦→ 𝑎 to denote

the assignment of variables in 𝑥 to the constants in 𝑎. We assume

any assignment 𝑥 ↦→ 𝑎 is always well-behaved, in the sense that if

a variable 𝑥 appears more than once in 𝑥 , it always gets assigned

to the same value. We say two assignments 𝑥 ↦→ 𝑎 and 𝑦 ↦→ 𝑏

are consistent if every variable 𝑧 that occurs in both 𝑥 and 𝑦 gets

assigned to the same value in both 𝑎 and 𝑏. Finally, we use the

notation 𝑡𝑖 to denote the variable tuple (𝑥1, . . . , 𝑥𝑎) for every atom

𝑅𝑖 (𝑥1, . . . , 𝑥𝑎) appearing in 𝑄 .

For every 𝑝 ∈ vertices(𝑇 ) such that 𝜒 (𝑝) = {𝑦1, . . . , 𝑦𝑟 } and

𝜉 (𝑝) = {𝑅1, . . . , 𝑅𝑠 }, define:

𝑆 (𝑝) = {[𝑝,𝑦 ↦→ 𝑎, 𝑡1 ↦→ 𝑐1, . . . , 𝑡𝑠 ↦→ 𝑐𝑠 ] |
𝑅𝑖 (𝑐𝑖 ) is a fact in 𝐷 for every 𝑖 ∈ [𝑠],
𝑦 ↦→ 𝑎 is consistent with 𝑡𝑖 ↦→ 𝑐𝑖 for every 𝑖 ∈ [𝑠]
𝑡𝑖 ↦→ 𝑐𝑖 is consistent with 𝑡 𝑗 ↦→ 𝑐 𝑗 for every 𝑖, 𝑗 ∈ [𝑠]}

where 𝑦 = (𝑦1, . . . , 𝑦𝑟 ). We then define the state set as:

𝑆 = ∪𝑝∈vertices(𝑇 )𝑆 (𝑝)

and 𝑠init = 𝑆 (𝑝0), where 𝑝0 ∈ vertices(𝑇 ) is the root of the hyper-
tree decomposition.

We define the transition relation Δ as follows. First consider

each non-leaf 𝑝 ∈ vertices(𝑇 ) such that 𝜒 (𝑝) = {𝑦1, . . . , 𝑦𝑟 } and
𝜉 (𝑝) = {𝑅1, . . . , 𝑅𝑠 }, with child nodes 𝑝1, . . . , 𝑝𝑙 (𝑙 ≥ 1). Denote

𝜒 (𝑝𝑖 ) = {𝑢𝑖,1, . . . , 𝑢𝑖,𝑟𝑖 } and 𝜉 (𝑝𝑖 ) = {𝑅𝑖,1, . . . , 𝑅𝑖,𝑠 } for 𝑖 ∈ [𝑙].
Then for each such 𝑝 , include all tuples of the following form in Δ:

( [𝑝,𝑦 ↦→ 𝑎, 𝑡1 ↦→ 𝑐1, . . . , 𝑡𝑠 ↦→ 𝑐𝑠 ], 𝐿,

[𝑝1, 𝑢1 ↦→ 𝑑1, 𝑡1,1 ↦→ 𝑓1,1, . . . , 𝑡1,𝑠1 ↦→ 𝑓1,𝑠1 ]
. . .

[𝑝𝑙 , 𝑢𝑙 ↦→ 𝑑𝑙 , 𝑡𝑙,1 ↦→ 𝑓𝑙,1, . . . , 𝑡𝑙,𝑠𝑙 ↦→ 𝑓𝑙,𝑠𝑙 ])

where 𝑢𝑖 = (𝑢𝑖,1, . . . , 𝑢𝑖,𝑟𝑖 ), such that the following conditions are

satisfied:

(1) [𝑝,𝑦 ↦→ 𝑎, 𝑡1 ↦→ 𝑐1, . . . , 𝑡𝑠 ↦→ 𝑐𝑠 ] ∈ 𝑆

(2) [𝑝𝑖 , 𝑢𝑖 ↦→ 𝑑𝑖 , 𝑡𝑖,1 ↦→ 𝑓𝑖,1, . . . , 𝑡𝑖,𝑠𝑖 ↦→ 𝑓𝑖,𝑠𝑖 ] ∈ 𝑆 for every

𝑖 ∈ [𝑙]
(3) 𝑡𝑖 ↦→ 𝑐𝑖 is consistent with 𝑡 𝑗1, 𝑗2 ↦→ 𝑓𝑗1, 𝑗2 for every 𝑖 ∈ [𝑠],

𝑗1 ∈ [𝑙], and 𝑗2 ∈ [𝑠 𝑗𝑖 ]
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(4) 𝑡𝑖1,𝑖2 ↦→ 𝑓𝑖1,𝑖2 is consistent with 𝑡 𝑗1, 𝑗2 ↦→ 𝑓𝑗1, 𝑗2 for every

𝑖1, 𝑗1 ∈ [𝑙], 𝑖2 ∈ [𝑠𝑖1 ], and 𝑗2 ∈ [𝑠 𝑗1 ].
(5) 𝐿 is the string:

𝑅𝑚1
(𝑏1,1)? . . . 𝑅𝑚1

(𝑏
1,ℎ1

) . . . 𝑅𝑚1
(𝑏1,𝑜1 )?

. . .

𝑅𝑚𝑛
(𝑏𝑛,1)? . . . 𝑅𝑚𝑛

(𝑏𝑛,ℎ𝑛 ) . . . 𝑅𝑚𝑛
(𝑏𝑛,𝑜𝑛 )?

where:

(a) {𝑚1, . . .𝑚𝑛} is the set of all 𝑚𝑖 ∈ [𝑠] such that 𝑝 is a

≺vertices-minimal covering vertex of 𝑅𝑚𝑖

(b) 𝑅𝑚1
≺atoms · · · ≺atoms 𝑅𝑚𝑛

(c) For each 𝑖 ∈ [𝑛], 𝑅𝑚𝑖
(𝑏𝑖,1) ≺𝑚𝑖

· · · ≺𝑚𝑖
𝑅𝑚𝑖

(𝑏𝑖,ℎ𝑖 ) ≺𝑚𝑖

· · · ≺𝑚𝑖
𝑅𝑚𝑖

(𝑏𝑖,𝑜𝑖 ) is the ordered sequence of all 𝑅𝑚𝑖
-facts

in 𝐷

(d) For each 𝑖 ∈ [𝑛], ℎ𝑖 ∈ [𝑜𝑖 ] is the unique index such that

𝑏𝑖,ℎ𝑖 = 𝑐𝑚𝑖

In particular, 𝐿 is the empty string 𝜆 when no relation index

𝑚𝑖 satisfying condition (a) above exists.

The case for leaf nodes in the hypertree decomposition is es-

sentially identical. For every leaf 𝑝 ∈ vertices(𝑇 ) such that 𝜒 (𝑝) =
{𝑦1, . . . , 𝑦𝑟 } and 𝜉 (𝑝) = {𝑅1, . . . , 𝑅𝑠 }, include all tuples of the fol-
lowing form in Δ:

( [𝑝,𝑦 ↦→ 𝑎, 𝑡1 ↦→ 𝑐1, . . . , 𝑡𝑠 ↦→ 𝑐𝑠 ], 𝐿, 𝜆)

where [𝑝,𝑦 ↦→ 𝑎, 𝑡1 ↦→ 𝑐1, . . . , 𝑡𝑠 ↦→ 𝑐𝑠 ] ∈ 𝑆 (𝑝), and 𝐿 is the string:

𝑅𝑚1
(𝑏1,1)? . . . 𝑅𝑚1

(𝑏
1,ℎ1

) . . . 𝑅𝑚1
(𝑏1,𝑜1 )?

. . .

𝑅𝑚𝑛
(𝑏𝑛,1)? . . . 𝑅𝑚𝑛

(𝑏𝑛,ℎ𝑛 ) . . . 𝑅𝑚𝑛
(𝑏𝑛,𝑜𝑛 )?

where notation is as above.

It is clear that T +
can be constructed in time poly( |𝑄 |, |𝐷 |), ob-

serving that the number of transitions in Δ is polynomial in |𝑄 |
and |𝐷 | (assuming that the hypertree width is constant), and that

each transition can be encoded in 𝑂 ( |𝐷 |) symbols. Thus, the only

thing remaining to be proved is the existence of a bijection between

the labelled trees of size |𝐷 | accepted by T +
, and the subinstances

of 𝐷 satisfying 𝑄 . Consider some 𝐷′ ⊆ 𝐷 such that 𝐷′ |= 𝑄 . Con-

struct a labelled tree 𝑡 from 𝐷′
as follows. Start with a tree with the

same structure as 𝑇 , but perform the following procedure: contract

any vertex that is not a ≺vertices-minimal covering vertex for some

atom in 𝑄 by deleting the vertex, and connecting its children (if

any) to its parent
1
, repeating this process until every vertex in the

tree remaining is a ≺vertices-minimal covering vertex. Now expand

each vertex 𝑝 in this tree by replacing it with a path in which each

vertex is labelled with an 𝑅𝑖 -fact or its negation (depending on

its presence in 𝐷′
) for every atom 𝑅𝑖 covered by 𝑝 , ensuring that

the orderings on the facts in 𝐷 and on atoms(𝑄) is respected. One
can check that, by construction, 𝑡 ∈ L(T +). Clearly, the mapping

just described is injective, as two distinct subinstances will lead to

trees with different labellings. It is also surjective, since given any

𝑡 ∈ L(T +), one can simply read off the labels on the vertices of 𝑡

1
Such a parent must always exist, since the root node must be a covering vertex by

definition of a hypertree decomposition, and the root node is clearly ≺vertices-minimal.

to reconstruct the corresponding subinstance 𝐷′ ⊆ 𝐷 . This shows

the existence of a bijection, as desired. □

Using this construction we can now state our result for self-join-

free conjunctive queries of bounded hypertree width, as far as it

applies to uniform reliability. Note that in the theorem statement

below we have dropped the condition on the database schema that

was present in Proposition 1.

Theorem 3. Let 𝑄 be a self-join-free conjunctive query of bounded

hypertree width, and 𝐷 a database instance. Then there exists an

algorithm UREstimate such that, for all 𝜖 ∈ (0, 1),
(1 − 𝜖)UR(𝑄,𝐷) ≤ UREstimate(𝑄,𝐷) ≤ (1 + 𝜖)UR(𝑄,𝐷)

with high probability. Moreover, UREstimate has runtime:

poly( |𝑄 |, |𝐷 |, 𝜖−1)

Proof. We will show how to realize the algorithm UREstimate,

given a conjunctive query𝑄 satisfying the specified conditions and

database instance 𝐷 .

Consider the subinstance 𝐷′ ⊆ 𝐷 “projected” on the relations

in 𝑄 , obtained from 𝐷 by removing all facts over relations that do

not occur in 𝑄 . By Proposition 1, we can construct an augmented

NFTA T +
such that |L |𝐷 ′ | (T +) | = UR(𝑄, 𝐷′) in time polynomial

in |𝑄 | and |𝐷′ |. Observing that the semantics for this augmented

NFTA T +
is determined by translation to an ordinary NFTA T

accepting the same trees as described in Section 4.1, and that this

translation can be performed in polynomial time, we can tractably

approximate UR(𝑄,𝐷′) by applying the NFTA counting algorithm

CountNFTA presented in [6] to T . Thus, we have:

(1 − 𝜖)UR(𝑄,𝐷′) ≤ CountNFTA( |𝐷′ |,T) ≤ (1 + 𝜖)UR(𝑄, 𝐷′)

Noting that UR(𝑄, 𝐷′) = 2
−|𝐷\𝐷 ′ |UR(𝑄, 𝐷), we get:

(1 − 𝜖)
2
|𝐷\𝐷 ′ | UR(𝑄,𝐷) ≤ CountNFTA( |𝐷′ |,T) ≤ (1 + 𝜖)

2
|𝐷\𝐷 ′ | UR(𝑄, 𝐷)

and hence:

(1−𝜖)UR(𝑄, 𝐷) ≤ CountNFTA( |𝐷′ |,T)2 |𝐷\𝐷 ′ | ≤ (1+𝜖)UR(𝑄, 𝐷)
thereby showing how to realize UREstimate as desired. □

5 PROBABILISTIC QUERY EVALUATION
The approximation scheme presented in the previous section is

applicable only for computing the uniform reliability of a (bounded

hypertree width, self-join-free) conjunctive query. We now consider

how to extend the approach above, to allow for arbitrary rational

probability values on the individual facts of the database instance.

We do this by attaching a series of extra states and transitions

to the states in the NFTA constructed in Proposition 1, in order

to multiply the number of trees accepted proportionally to each

subinstance’s weight.

5.1 NFTAs with multipliers
Since the addition of these extra states is rather notation-heavy,

we again use some syntactic sugar. We define a notion of NFTAs

with multipliers below, which allow the annotation of transitions

with a positive integer 𝑛, which we call a “multiplier”, indicating

the number of extra trees that should be induced upon taking
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that transition. Syntactically, NFTAs with multipliers are otherwise

identical to NFTAs.

Definition 2 (NFTA with multipliers). A (top-down) non-

deterministic finite tree automaton with multipliers (NFTAwith multi-

pliers, for short) is a tuple T c = (𝑆, Σ,Δ, 𝑠init), where 𝑆 is a finite set of
states, Σ is a finite alphabet of input symbols, Δ ⊆ 𝑆×Σ×N×(∪𝑘

𝑖=0
𝑆𝑖 )

is a set of transition tuples, and 𝑠init ∈ 𝑆 is the initial state. Again like

for ordinary NFTAs, we define the size of an NFTA with multipliers

as the size of the encoding of its transition relation.

Semantics (NFTA with multipliers). The semantics of NFTAs with

multipliers is similar to that of augmented NFTAs, in that acceptance

of a tree 𝑡 ∈ Trees𝑘 [Σ] is determined by a polynomial-time transfor-

mation from the NFTA with multipliers to an ordinary NFTA, and

then testing acceptance of 𝑡 on the ordinary NFTA. Given an NFTA

with multipliers T c = (𝑆, Σ,Δ, 𝑠init), we now show how to convert

it to an ordinary NFTA T = (𝑆 ′, Σ′,Δ′, 𝑠init). We first construct Δ′

from Δ as follows. Consider each tuple in Δ of the form:

(𝑠, 𝛼, 𝑛, 𝑠1 . . . 𝑠𝑣)
with 𝑠, 𝑠1, . . . 𝑠𝑣 ∈ 𝑆 (𝑣 ≥ 1), 𝛼 ∈ Σ, and 𝑛 ∈ N. If 𝑛 = 1, then simply

add to Δ′
the tuple:

(𝑠, 𝛼, 𝑠1 . . . 𝑠𝑣)
Otherwise if 𝑛 > 1, take the representation 𝑏1 . . . 𝑏𝑘 of 𝑛− 1 as a 𝑘-bit

binary string (where 𝑘 =
⌊
log

2
(𝑛 − 1)

⌋
+ 1), and add the following

transitions to Δ′
:

(1)

(𝑠, 𝛼, 𝑡1)
(𝑡1, 0, 𝑡2) (𝑡1, 1, 𝑡𝑘+1)

(𝑡𝑘 , 0, 𝑠1 . . . 𝑠𝑣) (𝑡𝑘 , 1, 𝑠1 . . . 𝑠𝑣)
(2) For all 2 ≤ 𝑖 < 𝑘 :

(𝑡𝑖 , 0, 𝑡𝑖+1) (𝑡𝑖 , 1, 𝑡𝑖+1)
(3) For all 2 ≤ 𝑖 < 𝑘 such that 𝑏𝑖 = 1:

(𝑡𝑘+𝑖−1, 0, 𝑡𝑖+1) (𝑡𝑘+𝑖−1, 1, 𝑡𝑘+𝑖 )
(4) For all 2 ≤ 𝑖 < 𝑘 such that 𝑏𝑖 = 0:

(𝑡𝑘+𝑖−1, 0, 𝑡𝑘+𝑖 )
(5) If 𝑏𝑘 = 0:

(𝑡
2𝑘−1, 0, 𝑠1 . . . 𝑠𝑣)

(6) If 𝑏𝑘 = 1:

(𝑡
2𝑘−1, 0, 𝑠1 . . . 𝑠𝑣) (𝑡

2𝑘−1, 1, 𝑠1 . . . 𝑠𝑣)

Set 𝑆 ′ = 𝑆 ∪ {𝑡1, 𝑡2} ∪ {𝑡3, . . . , 𝑡2𝑘−1}, renaming the new states as

necessary to ensure they are fresh, and repeat the process above for all

tuples in Δ. Finally, set Σ′ = Σ∪{0, 1}, where we assume Σ∩{0, 1} = ∅
without loss of generality.

For every tuple (𝑠, 𝛼, 𝑛, 𝑠1 . . . 𝑠𝑣) in the NFTA with multipliers,

the transitions
2
added by the translation above cause the number

of trees accepted to be multiplied by 𝑛. The additional trees are

2
In fact, since the new transitions we add in the translation correspond to a degenerate

NFTA accepting only paths, they can be seen as forming a non-deterministic finite

string automaton. We nevertheless present the transitions in terms of tree automata

so that they can be integrated with the result in Proposition 1.

obtained by gluing on paths corresponding to binary strings of

length 𝑘 =
⌊
log

2
(𝑛 − 1)

⌋
+ 1 (for 𝑛 > 1), starting from:

0 . . . 0︸︷︷︸
𝑘 times

up to 𝑏1 . . . 𝑏𝑘 . Moreover, the number of new states added to the

translated automaton for each multiplier value is logarithmic in 𝑛.

Remark 2. The translation defined above from an NFTA with mul-

tipliers T c
to its corresponding ordinary NFTA T can be performed

in time 𝑂 (poly( |T c |)).

5.2 Result
We can now prove the theorem from the introduction to the paper.

Theorem 1. Let 𝑄 be a self-join-free conjunctive query of bounded

hypertree width, and 𝐻 a probabilistic database instance. Then there

exists an algorithm PQEEstimate such that, for all 𝜖 ∈ (0, 1):

(1 − 𝜖) Pr
𝐻
(𝑄) ≤ PQEEstimate(𝑄,𝐻 ) ≤ (1 + 𝜖) Pr

𝐻
(𝑄)

with high probability. Moreover, PQEEstimate has runtime:

poly( |𝑄 |, |𝐻 |, 𝜖−1)

Proof. Like we did for Theorem 3, we will again show how

to realize the algorithm PQEEstimate, given a conjunctive query

𝑄 satisfying the specified conditions and probabilistic database

instance 𝐻 = (𝐷, 𝜋). Recall that probability labels are rational

numbers taking the form 𝜋 (𝑓𝑖 ) = 𝑤𝑖/𝑑𝑖 . Without loss of generality,

we can assume that 𝐷 is defined only on relations occurring in 𝑄 ,

since the probabilities of the additional subinstances marginalize

to 1.

Let 𝑑 denote the product of the denominators of all fact labels in

𝐷 , that is, 𝑑 =
∏

𝑓𝑖 ∈𝐷 𝑑𝑖 . For any (𝐷′, 𝜋) = 𝐻 ′ ⊆ 𝐻 , we have:

Pr

𝜋
(𝐷′) =

∏
𝑓𝑖 ∈𝐷 ′

𝜋 (𝑓𝑖 )
∏

𝑓𝑖 ∈𝐷\𝐷 ′
(1 − 𝜋 (𝑓𝑖 ))

=
∏
𝑓𝑖 ∈𝐷 ′

𝑤𝑖

𝑑𝑖

∏
𝑓𝑖 ∈𝐷\𝐷 ′

(
𝑑𝑖 −𝑤𝑖

𝑑𝑖

)
= 𝑑−1

∏
𝑓𝑖 ∈𝐷 ′

𝑤𝑖

∏
𝑓𝑖 ∈𝐷\𝐷 ′

(𝑑𝑖 −𝑤𝑖 )

and thus:

Pr

𝐻
(𝑄) =

∑︁
𝐷 ′⊆𝐷
𝐷 ′ |=𝑄

Pr

𝜋
(𝐷′) =

∑︁
𝐷 ′⊆𝐷
𝐷 ′ |=𝑄

𝑑−1
∏
𝑓𝑖 ∈𝐷 ′

𝑤𝑖

∏
𝑓𝑖 ∈𝐷\𝐷 ′

(𝑑 −𝑤𝑖 )

= 𝑑−1
∑︁

𝐷 ′⊆𝐷
𝐷 ′ |=𝑄

∏
𝑓𝑖 ∈𝐷 ′

𝑤𝑖

∏
𝑓𝑖 ∈𝐷\𝐷 ′

(𝑑 −𝑤𝑖 )

Noting that 𝑑 is a known constant, it will suffice to approximate

the sum term in the last equation, which we do below.

Take the augmented NFTA T +
constructed in Proposition 1

from 𝑄 and 𝐷 , and consider the corresponding ordinary NFTA

obtained from its translation T = (𝑆, Σ,Δ, 𝑠init). We will construct

an NFTA with multipliers T c = (𝑆, Σ,Δ′, 𝑠init) from T as follows.

The alphabet, state set, and initial state are identical to that of T .
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The transition set Δ′
is obtained from Δ as follows. It is clear that

every transition in Δ must either take the form
3
:

(𝑞, 𝑅 𝑗 (𝑥), 𝑟 )

or

(𝑞, ¬𝑅 𝑗 (𝑥), 𝑟 )
We add to Δ′

the tuple (𝑞, 𝑅 𝑗 (𝑥), 𝑤𝑖 , 𝑟 ) for every such tuple

of the former type, where 𝑤𝑖 is the numerator of the weight of

the fact 𝑅 𝑗 (𝑥) appearing in 𝐷 . Similarly, we add to Δ′
the tuple

(𝑞, ¬𝑅 𝑗 (𝑥), 𝑑𝑖 −𝑤𝑖 , 𝑟 ) for every tuple of the latter type.

Since every fact in the database appears exactly once either in

its positive or negated form in each of the trees accepted by T , it

follows that:

|L𝑘 (T c) | =
∑︁

𝐷 ′⊆𝐷
𝐷 ′ |=𝑄

∏
𝑓𝑖 ∈𝐷 ′

𝑤𝑖

∏
𝑓𝑖 ∈𝐷\𝐷 ′

(𝑑𝑖 −𝑤𝑖 )

where 𝑘 = |𝐷 | +∑
𝑓𝑖 ∈𝐷 𝑢 (𝑤𝑖 ), and:

𝑢 (𝑤𝑖 ) =
{
0 if𝑤𝑖 = 1⌊
log

2
(𝑤𝑖 − 1)

⌋
+ 1 otherwise

Thus, we have:

Pr

𝐻
(𝑄) = 𝑑−1 |L𝑘 (T c) |

and so, applying the NFTA counting procedure CountNFTA [6]

on the translated tree automaton T ′
derived from T c

we get:

(1 − 𝜖) Pr
𝐻
(𝑄) ≤ 𝑑−1CountNFTA(𝑘,T ′) ≤ (1 + 𝜖) Pr

𝐻
(𝑄)

as desired. □

6 CONCLUSIONS AND FUTUREWORK
We showed how to construct a combined FPRAS for the PQE prob-

lem, by taking advantage of recent results in counting trees of a

fixed size accepted by an NFTA. There are two key lines of future

work we would like to explore.

First, we would like to expand our results to a wider class of

queries, for example by relaxing the self-join-free condition in

Theorem 1. Initial results we have obtained in this direction suggest

that this may come at the cost of necessitating some mild structural

constraints on the input database. The second avenue we wish

to explore is integration of the proposed FPRAS procedure into

practical systems for probabilistic databases. Such an integration

would require both a tool for computing hypertree decompositions,

as well as a practical implementation of the CountNFTA algorithm.

The former task has been relatively well-studied, with ready-to-

use tools available: see, for example, the 2019 PACE challenge [13].

However, practically effective approximation methods for counting

fixed-size trees accepted by an NFTA remain limited, given the

recency of the corresponding theoretical result. Nevertheless, we

are optimistic that future work will bring the constants in this

algorithm down, paving the way for a practical implementation of

the approach presented here.

3
We assume here that 𝜆-transitions in T have already been eliminated using standard

procedures.
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