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We consider the problem of modelling probabilistic networks, where one is interested in modelling packets
moving through an unreliable network, with each link carrying a certain probability of failure. The domain-
specific language Probabilistic NetKAT provides a clear syntax and semantics for specifying such networks in
a filter-based (rather than state-based) manner. We introduce a formal translation to transform this domain-
specific language into ProbLog, a popular probabilistic logic programming language. We show how employing
this translation allows one to take advantage of different inference and learning procedures designed for
ProbLog in the context of Probabilistic NetKAT. This illustrates how transforming domain-specific languages
to general-purpose probabilistic programming languages can provide a kind of rapid prototyping.

1 INTRODUCTION
In network management, software-defined networking provides a paradigm for defining network
configurations by specifying the characteristics of a network and its routing policy programmatically.
Recently, Anderson et al. [2014] proposed NetKAT, a network modelling language with a formal
semantics for this. Probabilistic NetKAT [Foster et al. 2016] extends this language to allow for
modelling networks in the presence of uncertainty: for example, modelling an unreliable network
in which a packet may be dropped with a certain probability.
At the same time, the paradigm of probabilistic logic programming has enjoyed a rich history,

with a simple and flexible semantics that is naturally suited to modelling networks. In this paper we
explore the connection between the two paradigms by translating Probabilistic NetKAT programs
to the probabilistic logic programming language ProbLog [Fierens et al. 2015], in such a way that the
semantics of the original program are retained. This allows us to exploit several innovations from the
world of probabilistic logic programming in Probabilistic NetKAT programs, including parameter
learning, the use of semirings for modelling latency, and support for continuous distributions. We
argue that in general, it is useful to prototype domain specific probabilistic languages by translating
them to general-purpose probabilistic languages and thus benefiting from the range of inference
tasks they provide.

2 RELATEDWORK
Gehr et al. [2018] present a two-part approach, Bayonet, comprising a probabilistic programming
language, along with a corresponding inference system, that is geared towards modelling proba-
bilistic networks like those in this paper. In a similar spirit to our approach, they use a translation
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Actions 𝑎 F 𝑡 Test
| 𝑥 ← 𝑛 Modification
| 𝑎1 &𝑎2 Parallel
| 𝑎1 ; 𝑎2 Sequence
| 𝑎1 ⊕𝑟 𝑎2 Choice
| 𝑎★ Iteration
| dup Duplication

Tests 𝑡 F 𝑡1 & 𝑡2 Disjunction
| 𝑡1 ; 𝑡2 Conjunction

| 𝑡 Negation
| skip True
| drop False
| 𝑥 = 𝑛 Filter

Fig. 2. ProbNetKAT syntax.

system but target the language PSI [Gehr et al. 2016] rather than ProbLog. Bayonet is different from
Probabilistic NetKAT, as it reasons over states rather than packet histories, with the latter more
easily capturing temporal properties [Gehr et al. 2018]. The usage of ProbLog enables learning pro-
grams from data and extensions such as using semirings for a variety of other tasks. In the specific
context of Probabilistic NetKAT, Smolka et al. [2017] developed an alternative characterization of
the semantics of Probabilistic NetKAT and also proposed an interpreter for the language in OCaml.

3 BACKGROUND
In this section, we review some background on Probabilistic NetKAT, as well as the probabilistic
logic programming language ProbLog.

3.1 Probabilistic NetKAT
Probabilistic NetKAT [Foster et al. 2016] extends NetKAT [Anderson et al. 2014], a high-level
network modelling language—which in turn is based on Kleene algebra with tests (KAT)—with
probabilistic behavior.

Syntax. The syntax of Probabilistic NetKAT (ProbNetKAT) is shown in Figure 2. A NetKAT
program is an action 𝑎, which can take one of several forms: a modification 𝑥 ← 𝑛 that assigns
value 𝑛 to field 𝑥 of the current packet; parallel composition 𝑎1 &𝑎2; sequential composition 𝑎1 ; 𝑎2;
probabilistic choice 𝑎1 ⊕𝑟 𝑎2 that chooses 𝑎1 with probability 𝑟 and 𝑎2 with probability (1 − 𝑟 );
iteration 𝑎★; duplication 𝑑𝑢𝑝 of the current packet; or a test 𝑡 . Tests take into account the packet
history, which tracks packets 𝜋 during their travel from node to node. A test 𝑡 can be a disjunction
𝑡1 & 𝑡2; a conjunction 𝑡1 ; 𝑡2; a negation 𝑡 ; 𝑠𝑘𝑖𝑝 , which is the set 𝐻 of all packet histories and always
true; 𝑑𝑟𝑜𝑝 , which is the empty set and always false; or 𝑥 = 𝑛, which filters the packet history to
only include packets 𝜋 where field 𝑥 has value 𝑛.

1 210% loss

(sw = 1 ; sw <- 2 ⊕0.9 drop)

Fig. 1. Forwarding packets with 10% loss.

The ProbNetKAT example in Figure 1 encodes the for-
warding of packets in a network from switch 1 to switch
2 with a 10% loss factor. More examples of ProbNetKAT
programs are given in the appendix to this paper.

Semantics. Due to the combination of unbounded iteration with probabilistic choice, Prob-
NetKAT’s semantics features continuous distributions, which are modeled with Borel sets. Yet, for
the sake of the translation to ProbLog we bound the iteration and restrict ourselves to discrete
distributions; this yields a simplified semantics for actions.

⟦𝑎⟧ = 𝐻 → D 𝐻

Here 𝐻 is the set of all packet histories. A packet is a collection of fields 𝑥 with values 𝑛, which
are natural numbers. A packet history 𝜂 ∈ 𝐻 is a non-empty sequence ⟨𝜋1,. . .,𝜋𝑛⟩ of packets, from
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youngest to oldest, that tracks the subsequent changes to a packet. With D 𝐻 we denote the set of
discrete distributions over 𝐻 and we write ⟦𝑎⟧(𝜂in, 𝜂out) to denote the probability that, when 𝑎 is
run on 𝜂in, the result is 𝜂out .

3.2 ProbLog
ProbLog is a probabilistic logic programming language that combines the classic logic programming
language Prolog with uncertainty, by allowing facts to be annotated with independent probabilities.
The resulting semantics follows Sato’s distribution semantics [Sato 1995]. Formally, a ProbLog
program can be viewed as a triple (F , 𝑝,Ψ)whereF is a finite set of ground atoms called probabilistic
facts, 𝑝 : F → [0, 1] is a labelling function assigning a probability to each probabilistic fact, and Ψ
is a stratified normal logic program. The probability of a goal 𝑃F,𝑝,Ψ (𝐺) for a ground goal atom 𝐺

can be defined as:

𝑃F,𝑝,Ψ (𝐺) =
∑

F′⊆F,𝐺 ∈Π (F′)

∏
𝑓 ∈F′

𝑝 (𝑓 )
∏

𝑓 ∈F\F′
(1 − 𝑝 (𝑓 )) (1)

where Π(F ′) denotes the unique stable model of Π ∪ F ′. When clear from context, we will write
𝑃F,𝑝,Π (𝐺) as 𝑃 (𝐺). For the full details of the ProbLog syntax and semantics, including semantics for
computing the probability of non-ground goal atoms, we refer the reader to Fierens et al. [2015].

1 0.4::burglary.
2 0.5::earthquake.
3 0.3::alarm_on.
4 alarm :- alarm_on, burglary.
5 alarm :- alarm_on, earthquake.

Fig. 3. ProbLog example

Consider the example program in Figure 3 where
alarm is true iff alarm_on and there is either a
burglary or an earthquake. The probabilistic facts
F with their respective probabilities 𝑝 are indicated
in the first three lines. The deterministic part of the
program is given in the last two lines. The three
probabilistic facts result in 23 = 8 possible worlds.
Only three of these worlds entail the truth of alarm. Thus, to know the probability of alarm we
compute 𝑃 (alarm) = 0.3(0.5) (0.4) + 0.3(1 − 0.5) (0.4) + 0.3(0.5) (1 − 0.4) = 0.21.

4 TRANSLATION
Figure 4 defines a family of translation functions ⌊·⌋ to map the various ProbNetKAT syntax
constructs to their corresponding ProbLog encodings.

Packets and Packet Histories. A packet 𝜋 is translated to a ProbLog list of label-value pairs. A
packet history 𝜂 is similarly translated to a ProbLog list.

Tests. Tests correspond naturally to ProbLog goals that possibly take a packet history as an
argument. The translation function takes an extra parameter 𝐻 which is a ProbLog variable that
acts as a placeholder for this packet history. All but one test of the test constructs have primitive
ProbLog counterparts.1 Only the membership test requires a ProbLog helper predicate mem/3; its
definition is given in Appendix A.1.

Actions. Finally, ProbNetKAT actions 𝑎 are translated to a pair ⟨𝐺, 𝑅⟩ of a ProbLog goal𝐺 together
with a set of additional ProbLog rules 𝑅 that define auxiliary predicates used by the goal.

The ProbNetKat semantics of actions is to probabilistically transform a packet history. The
probabilistic aspect of this is ingrained in ProbLog’s semantics, but the packet history transformation
needs to be encoded explicitly. For that purpose the generated ProbLog goal 𝐺 takes an incoming

1Note the difference in the meaning of the semicolon in ProbLog queries and ProbNetKAT tests: the former is disjunction
and the latter conjunction.
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Packets and Packet Histories

⌊{𝑥1 = 𝑛1, . . . , 𝑥𝑘 = 𝑛𝑘 }⌋ = [𝑥1 − 𝑛1, . . . , 𝑥𝑘 − 𝑛𝑘] ⌊⟨𝜋1, . . . , 𝜋𝑛⟩⌋ = [ ⌊𝜋1⌋, . . . , ⌊𝜋1⌋]

Tests

⌊𝑠𝑘𝑖𝑝⌋𝐻 = true

⌊𝑑𝑟𝑜𝑝⌋𝐻 = false

⌊{𝑥 = 𝑛}⌋𝐻 = mem(x,n,H)

⌊𝑡⌋𝐻 = not(⌊𝑡⌋𝐻 )
⌊𝑡1 & 𝑡2⌋𝐻 = ⌊𝑡1⌋𝐻 ; ⌊𝑡2⌋𝐻
⌊𝑡1 ; 𝑡2⌋𝐻 = ⌊𝑡1⌋𝐻 , ⌊𝑡2⌋𝐻

Actions

⌊𝑡⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨(⌊𝑡⌋𝐻𝐼𝑛

, HIn = HOut, CIn = COut), ∅⟩

⌊𝑥 ← 𝑛⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨(modifyH(x, n, HIn, HOut), CIn = COut), ∅⟩

⌊𝑑𝑢𝑝⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨(duplicate(HIn, HOut), CIn = COut), ∅⟩

⌊𝑎1 &𝑎2⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨(𝐺1 ; 𝐺2), 𝑅1 ∪ 𝑅2⟩with ⌊𝑎1⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨𝐺1, 𝑅1⟩ and ⌊𝑎2⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨𝐺2, 𝑅2⟩

⌊𝑎1 ; 𝑎2⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨(𝐺1 , 𝐺2), 𝑅1 ∪ 𝑅2⟩with ⌊𝑎1⌋𝐻𝑀𝑖𝑑 ,𝐶𝑀𝑖𝑑

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨𝐺1, 𝑅1⟩ and ⌊𝑎2⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝑀𝑖𝑑 ,𝐶𝑀𝑖𝑑
= ⟨𝐺2, 𝑅2⟩

⌊𝑎1 ⊕𝑟 𝑎2⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨(f(CIn), G1; not(f(CIn)), G2), 𝑅1 ∪ 𝑅2 ∪ 𝑅3⟩

with ⌊𝑎1⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨𝐺1, 𝑅1⟩ and ⌊𝑎2⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨𝐺2, 𝑅2⟩

𝑅3 = r::f(CIn). with f fresh

⌊𝑎★⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
= ⟨f(HIn, CIn, HOut, COut), 𝑅 ∪ 𝑅1 ∪ 𝑅2⟩

with ⌊𝑎⌋𝐻2,𝐶2
𝐻1,𝐶

= ⟨𝐺, 𝑅⟩ and 𝐻,𝐻1, 𝐻2, 𝐻3,𝐶,𝐶1,𝐶2,𝐶3 free and f/4 fresh
𝑅1 = f(H,C,H,C).

𝑅2 = f(H1,C1,H3,C3) :- C is C1-1, G, f(H2,C2,H3,C3).

Fig. 4. Formal translation of ProbNetKat to ProbLog

and an outgoing packet history (HIn and HOut, respectively) as explicit arguments. At the meta-level,
the translation function is parameterized in the names of these arguments too.

As tests do not modify the packet history, their output history is the same as their input history.
Modification and duplication are handled by two auxiliary ProbLog predicates given inAppendix A.1.
Parallel and sequential composition are mapped to ProbLog disjunction and conjunction; both
thread the packet history appropriately. Probabilistic choice is mapped to a ProbLog disjunction
whose branches are guarded by a probabilistic fact with the corresponding probability, and Kleene
iteration is mapped to a recursive ProbLog rule.

There is one further complication in the mapping of probabilistic choices inside Kleene iterations.
According to the ProbNetKAT semantics, the dynamic repetitions of a probabilistic choice are all
independent. In contrast, repeated observations of the same probabilistic ProbLog fact are either
consistently true or consistently false. Hence, making independent choices in ProbLog requires
distinct facts. We accomplish this with parameterized facts, to which we supply a different parameter
at different dynamic invocations. For simplicity, we parameterize all probabilistic facts (not only
those inside Kleene iterations) in a counter value that we thread through the execution (CIn and
COut). The counter is decremented at the start of every iteration. Hence, repeated observations of
probabilistic facts get a different counter value and thus are independent.
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All translated ProbNetKAT programs consist of helper predicates (Appendix A.1) along with the
program-specific generated code. Recall the ProbNetKAT action from Figure 1. This translates to the
following ProbLog program ⌊𝑎⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
(improved for readability; the original is in Appendix A.2):

1 0.9::f(V1).
2 main(HIn,HOut,CIn) :- mem(sw,1,HIn),
3 (f(CIn), modifyH(sw,2,HIn,HOut) ; not(f(CIn)), false).

The main predicate has three parameters HIn, HOut, CIn, which are the same as those of the
translation function. The COut parameter is not present as it is only needed for intermediate results,
not for main. More examples are provided in Appendix A.3.

5 QUERIES
The ProbLog program resulting from the automated translation in the previous section can be used
to query ⟦𝑎⟧(𝜂in, 𝜂out) (recall the semantics from Section 3.1). This is best illustrated by an example.
Consider the ProbNetKAT action and its ProbLog translation in the previous section. To obtain the
probabilities of the possible output histories 𝐶 given an input packet history ⟨{𝑠𝑤 = 1}⟩, we can
simply query main([[sw-1]],HOut,1), yielding a probability of 0.9 for output ⟨{𝑠𝑤 = 2}⟩. Note
that the choice of CIn = 1 in this query is arbitrary: CIn simply denotes the counter starting value.
We can also restrict the output histories to ones satisfying some property of interest, by defining
and querying a predicate that holds whenever the property in question is true.

property_holds(HIn, CIn) :- main(HIn, HOut, CIn), property(HOut).

A key limitation of ProbLog’s current inference mechanics is that the query and program must
have a finite grounding [Fierens et al. 2015], stemming from the finite support condition of Sato’s
distribution semantics [Sato 1995]. The translation of a ProbNetKAT action containing a Kleene
star will violate this condition. To get around this, we adopt the approximation scheme proposed
by Foster et al. [2016], and alluded to in the simplified semantics of Section 3.1: we bound the
number of Kleene star iterations by a finite number. In our automatic translation, this only requires
bounding C1 > 0 in the definition of ⌊𝑎★⌋𝐻𝑂𝑢𝑡 ,𝐶𝑂𝑢𝑡

𝐻𝐼𝑛,𝐶𝐼𝑛
. The number of Kleene star iterations is then

determined by the counter starting value, CIn.

5.1 Expected Utility
The core ProbLog language has seen several different extensions over the years. One such extension
is to allow for the computation of expected utilities [Derkinderen and De Raedt 2020; Eisner 2002].
In this setting, certain probabilistic facts—and, distinct from the original ProbLog setting, certain
derived atoms as well—are annotated with a utility. In this context, we are typically no longer
interested in the probability of a specific query, but instead wish to compute the expected utility of
the program as a whole. This setting can be formalised as follows: instead of having only a mapping
𝑝 : F ↦→ [0, 1], we now also associate probabilistic facts and certain derived atoms with utilities
𝑢 : C ↦→ R for some finite subset C ⊆ 𝑎𝑡𝑜𝑚𝑠 (Π ∪ F ), where 𝑎𝑡𝑜𝑚𝑠 (Π ∪ F ) denotes the Herbrand
base of Π ∪ F . The utility 𝑢 (F ′) of a choice on the probabilistic facts F ′ ⊆ F is the sum of the
utilities of its derived atoms. The expected utility of the whole program 𝐸𝑈F,𝑝,𝑢,Π is then defined as:

𝐸𝑈F,𝑝,𝑢,Π =
∑
F′⊆F

𝑝 (F′)︷                              ︸︸                              ︷∏
𝑓 ∈F′

𝑝 (𝑓 )
∏

𝑓 ∈F\F′
(1 − 𝑝 (𝑓 )) ×

𝑢 (F′)︷            ︸︸            ︷∑
𝑎∈C∩Π (F′)

𝑢 (𝑎) (2)

The expected utility can be used to model, for example, expected latency or expected cost. The
brief example below illustrates how to compute the expected latency of packet ⟨{𝑠𝑤 = 1}⟩ moving
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through a network. In this example there are two routes leading to ⟨{𝑠𝑤 = 2}⟩, each with a different
latency (five and ten seconds, respectively). In order to associate a specific route with a latency
(utility), the route taken by the packet must be extractable from the packet history HOut. In the
example below, this information is stored as packet attributes, route1 and route2. Appendix A.4
includes an example where this information is instead extracted from the packet history.

(sw = 1 ; sw <- 2 ; route1 <- true ⊕0.9 route2 <- true)

1 0.9::f2(V1).
2 main(HIn,HOut,CIn) :- ...
3 visit_route1 :- input(In), main(In,HOut,1), mem(route1,true,HOut).
4 visit_route2 :- input(In), main(In,HOut,1), mem(route2,true,HOut).
5 utility(visit_route1, 5). % probability = 0.9
6 utility(visit_route2, 10). % probability = 0.1
7 input([[sw-1]]). % expected utility = 0.9 * 5 + 0.1 * 10 = 5.5

The mechanics of computing the expected utility is explored in more detail by Derkinderen and
De Raedt [2020]. This approach uses semirings that overload ProbLog’s sum and times operations.
The same concept can also be used to solve a variety of other tasks, for example, computation of
the “shortest path” in a network [Kimmig et al. 2017, 2011].

5.2 Learning
When Foster et al. [2016] introduced ProbNetKAT, learning programs from data was identified as
an interesting direction for future research. They envisioned this as learning a network policy by
observing (partial) traces of a running system. This is a type of parameter and structure learning
problem that has been studied more generally in the context of probabilistic logic programming [De
Raedt et al. 2015; Jain et al. 2019]. Transforming a ProbNetKAT action to a general probabilistic
logic programming language can thus allow us to make use of new algorithms, enabling a variety of
learning tasks. In ProbLog, we may address the task of maximum-likelihood learning of a program’s
probability parameters from (partially) observed models [Gutmann et al. 2011]. More formally, we
are given a ProbLog program (F , 𝑝,Π) in which the probability of (a subset of) the facts in F are
unknown along with a set of models, and the goal is to complete 𝑝 .
In the context of ProbNetKAT, the learning of link reliability can be modelled as maximum-

likelihood learning, and comes “for free” when translating to a ProbLog program. Consider the
first ProbNetKAT example in Appendix A.3 where the 10% loss parameters might be unknown and
could be learned from data. The data set of partially observed models comprises pairs of input and
output packet histories, as illustrated by the two partially observed models below. Note that in the
second model, the truth value of main([[sw-1]],[[sw-2]],1) is unobserved.

Model 1 Model 2
main([[sw-2]],[[sw-1]],1). not(main([[sw-2]],[[sw-1]],1)).

not(main([[sw-1]],[[sw-2]],1)).

6 CONCLUSION
We studied the network programming language ProbNetKAT, and showed how to transform
programs in this language to the general-purpose probabilistic logic programming language ProbLog.
We also examined some of the upsides of employing such an approach with respect to inference
and learning. In particular, leveraging ProbLog’s structure and parameter learning features can
allow learning of networks, and making use of ProbLog’s semiring extensions allows us to compute
several interesting properties of networks modelled in ProbNetKAT.
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A APPENDICES
A.1 Helper Predicates

mem(X,N,[P|_]) :- member(X, N, P).
member(X,N,[X-N|_]).
member(X,N,[_|H]) :- member(X,N,H).

modifyH(X,N,[P|H],[P1|H]) :- modify(X, N, P, P1).
modify(X, N, [], []).
modify(X, N, [X-_|H], [X-N|H]).
modify(X, N, [P-V|H], [P-V|H1]) :- P \== X, modify(X, N, H, H1).

duplicate([P | H], [P, P | H]).

A.2 Original Translation
0.9::f(V1).
main(HIn,HOut,CIn) :- mem(sw,1,HIn), V0 = HIn, V1 = CIn,
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1 2

10% loss

Fig. 5. Network with two nodes and a connection with 10% packet loss.

(f(V1), modifyH(sw,2,V0,HOut), COut = V1 ;
not(f(V1)), false, HOut = V0, COut = V1).

A.3 Translation Examples
Here we show some more example translations.
First, Figure 5 pictures two interacting nodes that are connected via a network that has a 10%

loss factor. We model this networking model in ProbNetKAT as follows:

(sw = 1; sw <- 2 ⊕0.9 drop) &

(sw = 2; sw <- 1 ⊕0.9 drop)

All translated ProbNetKAT programs consist of the helper predicates (Appendix A.1) and program-
specific generated code. Here, we focus on the latter. For the example in Figure 5, the generated code
consists of fresh facts f2 and f5, parameterized by a counter and accompanied by their probability.
The main predicate has three parameters HIn, HOut, CIn, which are the same as those of the
translation function, except for the COut parameter which is only used internally.

1 0.9::f2(V1).
2 0.9::f5(V4).
3

4 main(HIn,HOut,CIn) :-
5 mem(sw,1,HIn), V0 = HIn, V1 = CIn,
6 (
7 f2(V1), modifyH(sw,2,V0,HOut), COut = V1
8 ;
9 not(f2(V1)), false, HOut = V0, COut = V1
10 )
11 ;
12 mem(sw,2,HIn), V3 = HIn, V4 = CIn,
13 (
14 f5(V4), modifyH(sw,1,V3,HOut), COut = V4
15 ;
16 not(f5(V4)), false, HOut = V3, COut = V4
17 ).

Second, Figure 6 pictures a network with three nodes that send packets from node 1 to node 2
and node 2 to node 3, both with a 10% loss factor. The following program checks how many of the
sent packets arrive at node 3.

((sw = 1 ; sw <- 2 ⊕0.9 drop) & (sw = 2 ; sw <- 3 ⊕0.9 drop))★ ;

sw = 3
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1 0.9::f15(V14).
2 0.9::f18(V17).
3 p2(V3,V8,V4,V9) :- V4 = V3, V9 = V8.
4 p2(V5,V10,V7,V12) :-
5 V10 > 0, V8 is V10 - 1,
6 (
7 mem(sw,1,V5), V13 = V5, V14 = V8,
8 (
9 f15(V14), modifyH(sw,2,V13,V6), V11 = V14
10 ;
11 not(f15(V14)), false, V6 = V13, V11 = V14
12 )
13 ;
14 mem(sw,2,V5), V16 = V5, V17 = V8,
15 (
16 f18(V17), modifyH(sw,3,V16,V6), V11 = V17
17 ;
18 not(f18(V17)), false, V6 = V16, V11 = V17
19 )
20 ),
21 p2(V6,V11,V7,V12).
22

23 main(HIn,HOut,CIn) :-
24 p2(HIn,CIn,V0,V1), mem(sw,3,V0), HOut = V0, COut = V1.

A.4 Expected Utility Example
The ProbNetKAT action below translates to the ProbLog program in Figure 7. An example of a
query in this program is shown in Table 1.

(sw = 1 ; dup ; (sw <- 2 ⊕0.9 (sw <- 3 ; dup ; sw <- 2)))

Notice that the route taken from ⟨{𝑠𝑤 = 1}⟩ to ⟨{𝑠𝑤 = 2}⟩ can be extracted from the packet history.
We can utilise this to determine whether a link in the network was used, and to associate its usage
with an increased latency (Figure 7). The expected latency in this program for the input packet
⟨{𝑠𝑤 = 1}⟩ is 9.2.

1 2 310 % loss 10 % loss

Fig. 6. Network with three nodes and connections with 10% packet loss.
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1 % translated program
2 0.6::f4(V3).
3 main(HIn,HOut,CIn) :-
4 mem(sw,1,HIn), (V0 = HIn), (V1 = CIn),
5 duplicate(V0,V2), (V3 = V1),
6 (
7 f4(V3),modifyH(sw,2,V2,HOut),(COut = V3)
8 ;
9 not(f4(V3)),modifyH(sw,3,V2,V5),(V6 = V3),duplicate(V5,V7),
10 (V8 = V6),modifyH(sw,2,V7,HOut),(COut = V8)
11 ).
12 % extract link usage
13 used_link(X,Y) :- input(In), main(In, HOut, 1),

contains_link(HOut,X,Y).↩→

14 contains_link(H,X,Y) :- is_next_link(H,X,Y).
15 contains_link([H|P],X,Y) :- \+is_next_link(H,X,Y),

contains_link(P,X,Y).↩→

16 is_next_link([H,H2|_],X,Y) :- member(sw,X,H), member(sw,Y,H2).
17 is_next_link([H,H2|_],X,Y) :- member(sw,Y,H), member(sw,X,H2).
18 input([[sw-1]]).
19 % associate utilities (latency)
20 utility(used_link(1,2), 10).
21 utility(used_link(1,3), 4).
22 utility(used_link(3,2), 4).

Fig. 7. Example ProbLog program

Table 1. Results of querying main([[sw-1]],HOut,1) in the program of Figure 7.

Query Probability

main([[sw-1]],[[sw-2], [sw-1]],1) 0.6
main([[sw-1]],[[sw-2], [sw-3], [sw-1]],1) 0.4
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